

Object-Oriented
Programming With Java,

Second Edition

Barry J. Holmes
Daniel T. Joyce

JONES AND BARTLETT PUBLISHERS

Object-Oriented
Programming
with Java
Second Edition

Barry J. Holmes
Oxford Brookes University

Daniel T. Joyce
Villanova University

JONES AND BARTLETT PUBLISHERS
Sudbury, Massachusetts

BOSTON TORONTO LONDON SINGAPORE

Copyright © 2001 by Jones and Bartlett Publishers, Inc.

Library of Congress Cataloging-in-Publication Data
Holmes, Barry (Barry J.)

Object-oriented programming with Java / Barry Holmes, Daniel Joyce.
p. cm.

Includes bibliographical references and index.
ISBN 0-7637-1435-6
1. Java (Computer program language) 2. Object-oriented programming (Computer

Science) I. Joyce, Daniel T. II. Title.

QA76.73.J38 H62 2000
005.13’3—dc21 00-062545

7278

Cover image © Peter R. Harris

All rights reserved. No part of the material protected by this copyright notice may be repro-
duced or utilized in any form, electronic or mechanical, including photocopying, recording,
or any information storage or retrieval system, without written permission from the copyright
owner.

The computer programs presented in this book have been included for their instructional
value. They have been computer-tested with considerable care and are not guaranteed for any
particular purpose. The authors do not offer any warranties or representations, nor do they
accept any liabilities with respect to the computer programs.

Chief Executive Officer: Clayton Jones
Chief Operating Officer: Don W. Jones, Jr.
Executive Vice President and Publisher: Tom Manning
V.P., Sales and Marketing: Paul Shepardson
V.P., College Editorial Director: Brian L. McKean
V.P., Managing Editor: Judith H. Hauck
V.P., Design and Production: Anne Spencer
V.P., Manufacturing and Inventory Control: Therese Bräuer
Director of Media Services: W. Scott Smith
Senior Acquisitions Editor: Michael Stranz
Development and Product Manager: Amy Rose
Cover Design: Night & Day Design
Composition: Northeast Compositors, Inc.
Text Design: Delgado Design, Inc.
Printing and Binding: Courier Westford
Cover printing: John Pow Company, Inc.

This book was typeset in Quark 4.1 on a Macintosh G4. The font families used were Adobe
Caslon, Franklin Gothic, and Prestige Elite. The first printing was printed on 45 lb. Utopia
Book Matte.

Printed in the United States of America
04 03 02 01 00 10 9 8 7 6 5 4 3 2 1

World Headquarters
Jones and Bartlett Publishers
40 Tall Pine Drive
Sudbury, MA 01776
978-443-5000
info@jbpub.com
www.jbpub.com

Jones and Bartlett Publishers
Canada
2406 Nikanna Road
Mississauga, ON L5C 2W6
CANADA

Jones and Bartlett Publishers
International
Barb House, Barb Mews
London W6 7PA
UK

www.jbpub.com

This book is dedicated to all
of our students, past, present, and future

This page intentionally left blank

Preface

Our Intended Audience

Object-Oriented Programming with Java is written for first-year college/univer-
sity programming courses worldwide. It introduces you to object-oriented
design and programming and can be used in computing programs for a first
course. The book is aimed at a broad audience of students in science, engineer-
ing, and business, where a knowledge of programming is thought to be essential.

We have assumed that you have no prior knowledge of computer program-
ming; however, you are expected to be familiar with the fundamentals of operat-
ing a home computer.

Our Philosophy

We believe students should be exposed to sound, modern software development
practices from the very start of their studies. Several features of this textbook
support this philosophy:

■ Our audio-visual interface (avi) package, described in more detail later,
allows you to create interesting screen-oriented user interfaces from the very
start. For example, you will use check boxes, radio buttons, sliders, and dia-
logue boxes for input and will be able to output images and sounds.

■ In addition to allowing modern I/O approaches, the avi package provides
good practice in the use of abstraction and third-party packages.

v

vi Preface

■ Since Java is an object-oriented programming language, we introduce
objects from the word go! In Chapter 2 we show you how to use classes from
the Java Application Programming Interface (API) and how to create
objects. By Chapter 3 we introduce you to object-oriented programming and
the creation of your own classes and objects.

■ We introduce a systematic approach to program design, implementation,
and testing in Chapter 3, and this approach is used in examples and case
studies throughout the rest of the text.

■ We present the Unified Modeling Language (UML) and use it throughout
the text on an as-needed basis, allowing you to gradually learn this univer-
sally accepted modeling language as you also learn the fundamentals of
object-oriented programming with Java.

■ We provide an early introduction to object-oriented design approaches, such
as using noun and verb analysis to help identify objects and methods.

■ As the problems addressed become more complex, we turn to CRC cards to
drive the analysis stage.

■ We provide many nontrivial programs throughout the text to clarify topic
coverage and to provide examples of substantial programs.

The AVI Package

One of the difficulties we have found in the past in teaching Java to beginners is
the complexity of the Java input/output scheme, whether it is in the context of a
simple windowing system or a full-blown graphical user interface.

To overcome this problem, Barry Holmes has written an audio-visual inter-
face package in Java called avi, to enable beginner programmers to create and
use windowing components for input and output. In addition to the input and
output of text, the avi package will permit you to input from predefined check
boxes, radio buttons, and scrolling lists; display pictures; and play prerecorded
sound. This approach allows us to use more interesting examples than do most
introductory textbooks and will increase your interaction with the text. By the
end of the book you will have enough knowledge to understand fully how this
package was written and the functionality of its Java code.

Use of the avi package is introduced gradually throughout the early chap-
ters of the text:

■ In Chapter 2 we give an overview of the package, and you learn how to cre-
ate a window to hold your input and output objects, how to obtain an input
String from the user, and how to output text to the window.

■ Chapter 3 covers the output of images and sounds, and includes the use of a
“timer” so that you can control when these items are shown in the window.
Example programs include one that features a slide show of vacation spots

Preface vii

and another that simulates rolling a die, complete with the image of the die
face that turns up and an announcement of what was rolled.

■ Chapter 4 provides more input and output options: Sliders, Radio-
Buttons, and Memo boxes.

■ Chapter 5 completes the presentation of the avi by introducing the
Checkbox input object. Examples in this chapter include an “alarm clock”
program.

The avi package is included on the CD-ROM bundled with this book.

Overview of the Book

This textbook includes material typically covered in a first course in computer
programming, which are sometimes referred to as “CS1.” The CS1 material can
be found in Chapters 1 through 7, and should be enough material to build a first
course around. Additionally, Chapters 8 through 11 introduce graphical user
interface programming in Java, a topic that is increasingly finding its way into
the early part of the CS curriculum. Finally, Chapter 12 provides an introduc-
tion to more advanced data structure and algorithm topics.

Comparing the book’s topics to the current draft of the IEEE/ACM
Computing Curricula 2001, we can safely claim that it provides complete cover-
age of Programming Fundamentals areas 1 (Algorithms and problem-solving),
2 (Fundamental programming constructs), and 3 (Basic data structures), and
most of areas 5 (Abstract data types), 6 (Object-oriented programming),
7 (Event-driven and concurrent programming), and 8 (Using modern APIs).
Note that we do not cover area 4 (Recursion), since we believe that topic is more
suited to a later course. A more detailed description of the contents follows.

Chapters 1 to 5 provide a gradual introduction to the fundamentals of pro-
gramming. Here, much emphasis is placed upon good practice involving object-
oriented program design, testing, and implementation. These chapters broadly
cover: primitive data types, arithmetic, classes, objects, and input and output via
an audio-visual interface; class methods, constructors, and instance methods;
program design, UML notation, implementation, compilation and error correc-
tion; if and switch selection statements; while, do, and for loop statements;
and one-dimensional arrays.

Once you understand the fundamentals of programming and can create and
use classes competently, you can then explore the Java language and object-ori-
ented programming to a much greater depth. Chapters 6 and 7 cover the topics
of encapsulation, abstract data types, object properties, inheritance, polymor-
phism, genericity, exception handling, and data streams.

Graphical user interfaces are so important in the development of modern
software that Chapters 8 and 9 are devoted to the production of graphical
interfaces using the classes supplied by the Java Abstract Windowing Toolkit.

viii Preface

These chapters also explain how some of the avi package components that
have been used throughout the book for input and output are written in Java.

Since program and class design feature strongly in this book, Chapter 10
covers the topic of objects working together as well as further UML notation.

Chapter 11 provides a complete coverage of writing and running Java
Applets on a web browser.

Finally, Chapter 12 introduces the topics of sorting, searching, and dynamic
data structures.

Language and Computer Requirements

The most effective way to learn Java programming with this book is to use your
computer to run the example programs and case studies, and to check your
answers to the programming problems.

All the programs written in this book have been compiled and tested using
Sun Microsystems, Inc. Java Development Kit (SDK) version 1.2 (release 1.2.2)
on both a PC-compatible microcomputer under Windows 98 and a Sun
Workstation under Solaris.

The Introduction explains how to download and install the latest version of
the Java Development Kit from the World Wide Web to your computer.

Pedagogical Features

Objectives
Each chapter begins with a set of learning objectives.

Case Studies
Many chapters contain fully designed case studies with comprehensive docu-
mentation, program listings, and output.

Example Programs
All chapters contain complete example programs used to demonstrate the key
features of the chapter. All computer programs are followed by a listing of the
output from the program.

End-of-Chapter Summary
Every chapter contains a summary of its key points. This provides you with a
check-list of topics you should understand before you progress to the next chapter.

Review Questions
All chapters contain review questions to enable you to test and reinforce your
knowledge.

Preface ix

SYNTAX

These statements express the grammar of the language, and illustrate how
language statements are constructed.

This icon signals information the authors feel should be brought to your attention.1i

Pay special attention to this cautionary advice.!

Throughout the chapters you are asked to experiment with the
language features that have been introduced. Experimentation can take the form
of modifying an existing program to gain insight into its functionality, or writing a
new program to reinforce knowledge gained. This feature can form the focus for
many laboratory exercises.

NOW DO THIS

Exercises
All chapters contain pencil-and-paper exercises that are designed to test your
understanding of the programming topics introduced in the chapter. The exer-
cises should normally be tackled before the programming problems. Solutions
to the exercises appear in Appendix C.

Programming Problems
All chapters contain a robust set of programming problems that require the use
of a computer to solve.

Icons
The chapters include icons or special design elements for quick reference:

x Preface

Supplements to the Text

Compact Disk
A CD-ROM accompanies this book and contains the following software:

■ The audio-visual interface.

■ All of the example and case-study computer programs used throughout the
book.

■ All of the image and sound files required to support the example programs.

Instructor’s Guide
A comprehensive web-based instructor’s guide is available, free of charge, to
adopters of Object-Oriented Programming with Java. The instructor’s guide is
accessible via a password protected page on the Jones and Bartlett web site. This
guide contains hints and tips on teaching the material, together with all of the
answers to the review questions, and many of the programming problems. To
utilize this guide, qualified instructors should contact their Jones and Bartlett
Publisher’s Representative at (800) 832-0034 or info@jbpub.com to receive a
URL and password.

Acknowledgments
The authors would like to express their thanks to the following technical
reviewers, whose comments they found to be most constructive and helpful, and
who have contributed toward shaping this book into its present form: Robert
Burton, Brigham Young University; Michael Fry, Lebanon Valley College;
David Hughes, Brock University; Pamela Lawhead, University of Mississippi;
Dale Skrien, Colby College.

In addition, the authors would like to express their thanks to Amy Rose and
Michael Stranz at Jones and Bartlett and to Mike and Sigrid Wile at Northeast
Compositors for their professional insight and team approach to the develop-
ment and the production of the book.

Barry Holmes—Oxford, England
Daniel Joyce—Philadelphia, USA

Contents
Chapter 0 Introduction 1

0.1 What is Java? 2
0.2 Using the Internet 3
0.3 Downloading the Java 2 SDK for Windows, Unix

(Solaris), and Linux Users 4
0.4 Downloading Java 2 SDK Documentation 4
0.5 Creating a Java Software Development

Environment 5
0.6 Copying and Installing the Audio-Visual Interface

(AVI) 7
0.7 How to Input and Save a Java Program in the

Computer 9
0.8 How to Compile a Java Program 10
0.9 How to Execute (run) a Java Program 12
0.10 SDK Tools 14
0.11 Copying and Editing Programs from the CD 15

Summary 17

Chapter 1 Primitive Data Types and Arithmetic 19
1.1 Data 20
1.2 Data Storage 21

Number Systems 23
1.3 Identifiers 27
1.4 Syntax 29
1.5 Variables and Constants 31

xi

1.6 The Format of a Simple Program 33
1.7 Arithmetic 35

Unary Operators 35
Binary Multiplicative Operators 35
Binary Additive Operators 35

1.8 Operator Precedence 40
1.9 Casting 42

Summary 45
Review Questions 46
Exercises 47
Programming Problems 49

Chapter 2 Objects 51
2.1 Introduction to Objects 52
2.2 The String Class 53

Declaring Objects 54
Methods and Parameters 54
Constructors 56
String Assignment 58
Instance Methods 58

2.3 The Anatomy of a Simple Program Revisited 61
Heading Giving Details of the Name and Purpose of the

Program 62
Import List 62
Class Name 63
Main Method 63

2.4 The AVI Package 63
2.5 The Window Class 65
2.6 Input to a Dialog Box 69
2.7 Converting Strings to Numbers 72
2.8 Command Line Arguments 75
2.9 Errors 78

Syntax Errors 78
Run-Time Errors 82
Logical Errors 82

Summary 82
Review Questions 83
Exercises 84
Programming Problems 85

Chapter 3 Object-Oriented Programming 87
3.1 Abstract Data Type 88
3.2 Constructors 90
3.3 Instance Methods 93
3.4 Class Methods 101

xii Contents

3.5 Scope and Lifetime of Identifiers 104
3.6 Software Development 106
3.7 Object-Oriented Program Design 108

Identify the Classes and Methods 109
Algorithm Development 111
Testing 112
Compilation and Execution 112
Documentation 113

Case Study: Cutting Logs 116
3.8 The AVI Package Revisited 124

The Audio Class 125
The Timer Class 128
The Filmstrip Class 130

Case Study: A Simulation of Rolling a Die 135
Summary 144
Review Questions 146
Exercises 147
Programming Problems 150

Chapter 4 Selection 153
4.1 More AVI Classes 154

The Slider Class 154
The RadioButtons Class 156

4.2 If..else Statement 161
4.3 Nested If Statement 166
4.4 Conditional Expressions 172
4.5 Else if Statements 176
4.6 Boolean Data Type 177
4.7 Switch 179
4.8 Wrapper Classes 184

Case Study: Body Mass Index 185
4.9 Yet another AVI Class! 194

The Memo Class 194
4.10 The This Object 195

Case Study: Validation of Dates including Leap
Years 196

Summary 209
Review Questions 210
Exercises 210
Programming Problems 212

Chapter 5 Repetition and One-Dimensional Arrays 217
5.1 Loop Structure 218
5.2 While Loop 220

Contents xiii

While Loop Controlled by a Counter 220
While Loop Controlled by Data 220

5.3 Do..while Loop 227
5.4 Increment/Decrement Operators 232
5.5 For Loop 235
5.6 Which Loop? 239

while 240
do..while 240
for 240

5.7 Arrays Revisited 241
5.8 Declaring and Initializing One-Dimensional

Arrays 242
Three Methods 242

5.9 Using Arrays 245
Case Study: Palindrome 253

5.10 Our Last AVI Class: CheckBoxes 261
The CheckBox Class 261

5.11 Formatting Numbers for Output 264
Case Study: Ben’s Breakfast Bar 267
Summary 282
Review Questions 283
Exercises 283
Programming Problems 285

Chapter 6 Advanced Concepts with Classes 289
6.1 Inheritance 290
6.2 An Example of Inheritance 292
6.3 Overriding Superclass Methods 299
6.4 Polymorphism 303
6.5 Instanceof Operator 307
6.6 Shadowed Variables 309
6.7 Inner Classes 312
6.8 Abstract Methods and Classes 312

Case Study: Boats 317
6.9 Interfaces 339
6.10 Constructors Revisited 345
6.11 Instance Methods Revisited 347
6.12 Object Properties 348

Comparing Objects 348
Copying Objects 350
Passing Objects as Parameters 352

Case Study: Arithmetic of Rational Numbers 353
6.13 Garbage Collection and Object Finalization 361

Summary 363

xiv Contents

Review Questions 365
Exercises 366
Programming Problems 371

Chapter 7 Exceptions and Streams 375
7.1 Introduction 376
7.2 Exception Classes 377
7.3 Catching an Exception 379
7.4 Catching Multiple Exceptions 383
7.5 Creating Your Own Exception Class 387
7.6 Throwing an Exception 390
7.7 Finally Blocks 394
7.8 Using Exception Handling 396
7.9 Stream Input and Output 398
7.10 The StreamTokenizer Class 404
7.11 Text File Processing 407

Book Example Problem 412
Another Example: Using a File Viewer 417

7.12 The FileDialog Class 419
Case Study: Reporting on the Statistics of a

Text File 422
Summary 433
Review Questions 434
Exercises 435
Programming Problems 438

Chapter 8 An Introduction to the java.awt Package 443
8.1 Creating a Container 444
8.2 Handling an Event 448
8.3 Adding a Button to the Container 451
8.4 Adding Labels, Fonts, and Text Fields to a

Container 457
Labels 457
Fonts 458
Text Fields 461

8.5 Adding Check Boxes, Radio Buttons, and Lists to a
Container 465

Check Boxes 465
Radio Buttons 468
List 472

8.6 Creating a Reusable Container 476
8.7 Creating a Reusable WritingPad Component 480

Contents xv

8.8 Creating a Reusable DialogBox Component 486
8.9 Creating a Reusable CheckBoxes Component 491
8.10 Java Swing 497

Summary 497
Review Questions 499
Exercises 500
Programming Problems 500

Chapter 9 Vectors, Serialization, and the java.awt Graphics
Class 501
9.1 Vectors 502

Case Study: Chemical Elements 508
9.2 Saving and Loading Serializable Objects 520
9.3 The Graphics Class 524
9.4 Mouse Events 527
9.5 Pop-Up Menus 534
9.6 Painting the Screen 544
9.7 Printing Objects 548

Summary 558
Review Questions 558
Exercises 559
Programming Problems 560

Chapter 10 Objects Working Together 563
10.1 Packages 564
10.2 Associations 570
10.3 CRC Cards 582
10.4 Aggregation 586
10.5 Composition 598
10.6 Building a Student Management System 599
10.7 Menus Revisited 604
10.8 Testing the Student Management System 608

Summary 613
Review Questions 614
Exercises 615
Programming Problems 616

Chapter 11 Applets and Threads 619
11.1 Introduction 620
11.2 Applets 622
11.3 Input to Applets 628
11.4 Playing Sounds 634
11.5 Displaying Images 637

xvi Contents

11.6 Loading Images 639
11.7 Arrays Revisited 641
11.8 Image Maps 645
11.9 Threads 649

Case Study: An Example of Multithreading 657
11.10 Animation 668
11.11 Restrictions 673
11.12 Sound and Images with Applications 674

Sound 675
Images 675

11.13 Conclusion 676
Summary 677
Review Questions 679
Exercises 680
Programming Problems 682

Chapter 12 Sorting, Searching, and Dynamic Data Structures 685
12.1 Sorting 686
12.2 Class java.util.Arrays—Sort
12.3 Sequential Search 700
12.4 Class java.util.Arrays—Binary Search
12.5 Linked Lists 708

LinkedList Class 718
12.6 Stacks 726

Case Study: Using a Stack for Converting Algebraic
Expressions 728

Summary 738
Review Questions 739
Exercises 739
Programming Problems 739

Appendix A Tables 743
A.1 ASCII Characters 743
A.2 Java Primitive Data Types 744
A.3 Operator Priorities 745
A.4 Escape-Sequence Characters 746

Appendix B Syntax of Java 747
B.1 Productions of Lexical Structures 747
B.2 Productions from Types, Values, and Variables 747
B.3 Productions from Names 748
B.4 Productions from Packages 748

Contents xvii

B.5 Productions Used Only in the LALR(1)
Grammar 749

B.6 Productions from Classes 749
Productions from Class Declarations 749
Productions from Field Declarations 750
Productions from Method Declarations 751
Productions from Static Initializers 751
Productions from Constructor Declarations 751

B.7 Productions from Interfaces 752
Productions from Interface Declarations 752

B.8 Productions from Arrays 752
B.9 Productions from Blocks and Statements 753
B.10 Productions from Expressions 756

Appendix C Answers to Exercises 761

Index 805

xviii Contents

C H A P T E R 0

Introduction
Welcome to the world of Object-Oriented Programming with Java.

Please take your time to read this introduction. It will help you set up your
computer system so that you can execute the Java program examples used
throughout this book and so that you will be able to create and execute your own
Java programs.

The chapter begins by instructing you how to download and install the Java 2
Software Development Kit (SDK) from Sun Microsystems, Inc. onto your com-
puter. The SDK is free of charge, and subject to the licensing agreement set out
by Sun Microsystems, Inc. Sun’s SDK will be used exclusively throughout this
book; therefore, it is important that you get off to the right start by installing all
the Java software and documentation that will you need to build and run Java pro-
grams on your computer.

The CD that accompanies this text includes a package of Java routines, the
Audio-Visual Interface package (AVI). It will enable you to easily use screen-ori-
ented user interfaces in your programs. You will learn how to set up your com-
puter so that your programs can automatically use this package. You will also
learn how to access the book’s example programs, which are also contained on
the CD. (Note that everything contained on the CD is also available at the text-
book’s Web site.)

Additionally, you will be instructed on how to edit, save, create, compile, and
execute Java programs. By the end of this introduction you should have an under-
standing of the following topics.

■ A brief history of Java.

■ How to download the Java 2 SDK from Sun Microsystems, Inc.

1

2 Chapter 0 Introduction

■ How to configure your computer to use the Java 2 SDK.

■ How to install the Audio-Visual Interface (AVI).

■ How to create and save a Java program using an editor.

■ How to compile and run your first Java program.

■ Java 2 SDK Tool support.

■ How to copy, modify, and save programs from the CD.

0.1 What is Java?

Java is a computer language, designed and implemented by Sun Microsystems,
Inc. The term Java is not an acronym; it was adopted to reflect a favorite drink
(coffee) of many programmers—hence Sun’s logo for Java is a cup of steaming
coffee.

Java is a very young language in comparison with such languages as Pascal
and C (both developed in the early 1970s). Although Java was first brought to
the attention of the public in 1995, it started life back in 1990. A team at Sun,
headed by James Gosling, designed a new programming language known as
Oak (allegedly named after a tree outside the window of its main designer) for
the development of consumer electronics software.

In 1993, the World Wide Web appeared on the Internet. The Sun develop-
ment team soon realized that the Java language would be suitable for writing
programs to run on different computers connected to the Internet. This was a
milestone, since Java was the first language to provide features to allow pro-
grams to be downloaded as part of a web page and run on a user’s computer. To
demonstrate this new feature, Sun developed the first web browser to support
Java applets (a Java program designed to run using a Java-enabled web browser);
they named it HotJava.

In addition to applets, the Java language can be used to develop standalone
application programs that do not involve the use of web pages.

Java is an object-oriented language, unlike Pascal and C, which are proce-
dural languages. As a programmer, object-oriented programming means that
you focus on building classes to represent the data in your application, rather
than on the solution to a problem as a set of procedures that must be followed in
a set order.

The Java language is small in size and simple to learn and to use. The power
of the language comes from the extensive library of utilitarian software compo-
nents that a programmer may use.

You are not restricted to developing and running your programs on just one
type of computer. Java programs are portable. For example, a program written
and compiled for a PC may be transferred without modification to run on, say, a
Sun Workstation.

Java offers improvements over other computer languages in that it is robust,
secure, and may be used for networking applications.

0.2 Using the Internet 3

As a young language, Java is still evolving. Although the core of the language
is small, the evolution appears to be coming from the addition of more and
more useful libraries to the development environment. The language in 1995
used version 1.0, followed by major additions to the libraries and minor modifi-
cation to the core language, leading to version 1.1 in 1997.

In 1998, Java version 1.2 was launched and was popularly dubbed Java 2. All
the programs in the book and on the enclosed CD have been developed using
Java 2 version 1.2.2. Since version 1.3.0 also became available at the time of
writing this book, all the programs have also been tested using this new edition
of the language.

0.2 Using the Internet

If you already have access to the Internet on your computer, please go to the
next section on downloading the Java 2 SDK for Windows, Unix, and Linux
users. However, if you are new to computers and would like to know how to link
your computer to the World Wide Web, then please read on.

There are three essential requirements you need to fulfill before you can con-
nect to the Web.

■ Your computer must have a modem installed in order to connect it with your
domestic phone line or mobile phone. If you don’t have such equipment,
then contact your computer dealer for more information.

■ You need an account with an Internet provider; this is an organization that
your computer will dial into and enable you to gain access to the Internet.
There are many Internet providers all competing for your account. Many
providers will allow you hours and hours of free connect time before they
start billing you for their service. Many Internet providers advertise in popu-
lar computer magazines, so read around and make your own informed choice
as to which provider to choose. Once you have an account, you will be given
a user id and a password, which must be used each time you need to gain
access to the Internet via the provider.

■ You need an Internet browser. A browser is a computer program that will
enable you to move around the World Wide Web looking for information.
There are several popular browsers available, for example Microsoft Internet
Explorer, Sun HotJava, and Netscape Navigator.

To connect with the World Wide Web on the Internet, use your browser to
connect with your Internet provider. You may need to type your password when
prompted. Once you are connected with your Internet provider you have access
to all those many millions of people and companies who subscribe to the
Internet worldwide.

4 Chapter 0 Introduction

0.3 Downloading the Java 2 SDK for Windows,
Unix (Solaris), and Linux Users

If you want to use Java 2, version 1.2.2 or later, on a Windows, UNIX, or Linux
platform, then once you have logged onto the Internet, input the following
address (URL) to your Web browser:

http://java.sun.com

Browse through the web pages, mouse-clicking on the following hot links:

Products & APIs
Java 2 Platform, Standard Edition

You now have a choice of which version of the Java 2 SDK (Software Development
Kit) to download. Since all the programs on the enclosed CD were developed
using version 1.2.2, we will use this version in the explanation. You are, of course,
free to choose a later version.

Java 2 SDK, Standard Edition, v 1.2.2

You then have to choose a platform:

Java 2 SDK v 1.2.2 005 Windows 95/98/NT Production Release
Java 2 SDK Solaris Production Release
Java 2 SDK v 1.2.2 for Linux Production Release

By following the instructions on the screen, the software and documentation
will be downloaded to the hard drive on your computer, unless you request oth-
erwise. The time needed to download the complete development kit will vary
considerably, since this depends upon the speed of your connection to your
provider, and the time of day you access the Internet.

0.4 Downloading Java 2 SDK Documentation

In addition to downloading the SDK, you may also want to download the asso-
ciated documentation. It is also free of charge, and we strongly suggest you
download it so that you have easy access to it while pursuing your study of
object-oriented programming with Java. Assuming you are still connected to the
Internet, use your web browser to return to the page that contained the options
for downloading the Java 2 SDK. Further down this page you will see hot links
to the documentation. Choose:

English Java 2 SDK documentation

This will take you to the Java 2 SDK documentation. Follow the instructions for
downloading the documentation.

Note: If you are a Windows user, you will need access to a zip utility such as
WinZip.

http://java.sun.com

0.5 Creating a Java Software Development Environment 5

By using the Sun Microsystems Web site you can always keep in touch with the latest devel-
opments to the Java language.

1i
0.5 Creating a Java Software Development

Environment

All the instructions that follow assume that you are using a PC running either
Microsoft’s 95/98 (or later) or NT Windows operating systems. For Unix and
Linux platforms, use the equivalent platform-dependent instructions.

If you are using the Windows platform, the file jdk1_2_2-win should
already be downloaded if you have followed the previous directions. This file is
known as a self-extracting program. Running it will cause it to extract from
itself the many files that make up the Java 2 system. Mouse-click on the file-
name to run the program. Follow the on-screen instructions to install the Java 2
SDK on your computer. Use Windows Explorer to inspect the files that have
been added to your C drive under the directory jdk1.2.2 (or a later version of
your choice). A listing of this directory is given in Figure 0.1. The docs folder
should not appear since it has not yet been included in the environment.

Figure 0.1 The jdk1.2.2 directory on drive C with its subdirectories and files

6 Chapter 0 Introduction

Figure 0.2 Opening page of the Java Documentation

If you chose to download the Java SDK documentation, then you should fol-
low this next step that describes how to install the documentation. A file called
jdk1_2_2-doc should have been downloaded. If you are using a Windows plat-
form, then mouse-click on this file and it should invoke the WinZip utility.
Request to extract the files and store them on drive C. Do not specify a subdi-
rectory. When the extraction is complete, the jdk1.2.2 directory will contain
the docs subdirectory. If you open the docs subdirectory and mouse-click on
the index, your default Web browser will be invoked, providing you access to
the Java SDK, Standard Edition Documentation. Figure 0.2 illustrates the
opening page of this documentation.

If you scroll through the page illustrated in Figure 0.2 to the heading API &
Language Documentation and mouse-click on the Java 2 Platform API
Specification, you will see the page illustrated in Figure 0.3. API stands for
application programming interface.

Be curious, look around, explore. For example, examine what is contained
under the packages named java.lang, java.string, and java.util. You
may not understand the technical content of the documentation at this stage;
however, you will start to get a feel for how to access the documentation and
how it is organized.

0.6 Copying and Installing the Audio-Visual Interface (AVI) 7

Figure 0.3 Java 2 Documentation, introductory page

You are strongly advised to keep the documentation iconized on your computer, ready for
reference when you start to develop your own programs.

1i

0.6 Copying and Installing the Audio-Visual
Interface (AVI)

The CD that accompanies this text includes a package of Java routines (the AVI
package) that will enable you to easily use screen-oriented user interfaces in your
programs. Most of the book’s examples also use this package. It is important
that the package be installed properly on your computer.

The following instructions are intended for Windows users. Unix and Linux
users are advised to use the equivalent platform-dependent instructions.

Copy the avi directory and its contents from the CD included with this
book and store it as a directory on the C drive. Figure 0.4 shows a listing of the
entries in the avi directory.

8 Chapter 0 Introduction

Figure 0.4 The contents of the avi directory

Now that the SDK and the AVI package have been installed on your com-
puter, you must set up your computer so that these programs can be located
when needed. Use the NotePad utility to open the autoexec.bat file that is
stored on your C drive. Amend the file to include the jdk1.1.2 directory in the
path entry. Also include a CLASSPATH entry. The following listing of an
autoexec.bat file illustrates how the path and CLASSPATH entries have been
modified to include jdk1.2.2 and the avi package.

@C:\PROGRA~1\NORTON~1\NAVDX.EXE /Startup
set CLASSPATH=.;c:\
path=c:\jdk1.2.2\bin

0.7 How to Input and Save a Java Program in the Computer 9

The interpretation of the CLASSPATH entry follows. The pathways are separated
by the semicolon, hence there are two pathways the computer should use when
searching for the named packages. The first pathway is signified by the use of a
period (.), which implies the current directory. The computer will search all
subdirectories of the current subdirectory to find the subdirectory of the avi
package.

The second pathway is signified by c:\, which is the root directory of the C
drive. The computer will search all the subdirectories of the root directory to
find the subdirectory of the avi package. If you use software that also requires a
CLASSPATH entry, append the entry to the one shown here. Separate the entries
with a semicolon, and set the CLASSPATH only once.

The path entry signifies where on the C drive the computer can find the
Java development environment. Once again, if you use software that requires a
path entry, append the entry to the one shown here, separating different path-
names by a semicolon.

Save the modified autoexec.bat file, and finally restart your computer.

0.7 How to Input and Save a Java Program in
the Computer

In order to type a Java program at the keyboard and save the program on a disk,
it is necessary to run a program called an editor or word processor. In addition to
enabling program entry, an editor allows a program to be retrieved from disk
and amended as necessary. A Java program is stored in text mode so that the
programmer can read the program as it was written.

Once again, the following illustration assumes a Windows platform. Unix
and Linux users should use the equivalent platform-dependent commands and
software.

Try the following. From your Microsoft Windows environment, mouse-
click on Start, and then select Programs from the menu, followed by
Accessories from the next menu, then mouse-click on WordPad from the final
menu.

WordPad is a simple word processor to use; you are advised to use this soft-
ware to create all your Java programs. WordPad is not the only word processing
package—you may also have NotePad, Word, or other word processing pro-
grams on your computer.

Use WordPad to type the following program so that it appears on your
screen. Don’t worry that you cannot yet understand the meaning of the state-
ments in the program. A full explanation of this program will be given in
Chapter 2.

10 Chapter 0 Introduction

In reality it doesn’t matter which word processing software you use as an editor to input
your program as long as you save the program as a text file with a .java suffix.

!

// program to write the text literal "HELLO WORLD" centrally on the screen

import avi.*;

class Example_1
{

public static void main(String[] args)
{

// create a window object screen
Window screen = new Window("Example_1.java","bold","red",72);

screen.showWindow();
screen.write("\n\n\n HELLO WORLD");

}
}

The next step is most important. You must save the program as a text document,
having a filename appended with .java. For example, the program that you
have just typed must be saved under the filename Example_1.java, as a text
file.

Figure 0.5 shows you how to save the file Example_1.java as a text document
in the subdirectory Introduction.

0.8 How to Compile a Java Program

Before a program can be run on your computer, it first must be compiled.
Compilation is a process that will transform your program into a form the com-
puter can execute.

The computer cannot execute the Java statements as they currently appear in
the program; the statements must be translated to an intermediate form for exe-
cution. The compiler is resident in the memory of the computer and uses the
Java source program code as input data. The output from the compiler is the
same program, now represented by a set of Java byte codes. Java byte codes are a
set of instructions written for a hypothetical computer, known as the Java vir-
tual machine. Regardless of the computer you are using, whether it is a PC,
Apple™, or Sun™ computer, the compiler will generate the same Java byte-
code program. For this reason programs written in Java are portable. A program
written in Java to run on, say, a PC that also runs without modification on a dif-
ferent computer, for example, a Sun, and produces exactly the same results, is
said to be portable between the two computers.

In addition to translation, a compiler reports on any grammatical errors
made by the programmer in the language statements of the program. If errors

0.8 How to Compile a Java Program 11

Figure 0.5 Using WordPad to save a Java program as a text document

are reported, it is necessary to return to the editor to correct the errors, resave
the program, and then recompile the program.

If you are working on a PC using Microsoft’s Windows environment, then
open an MSDOS window and change your subdirectory to wherever you saved
your Java program Example_1.java. In this scenario, the program is stored in
the subdirectory Java\disk\Introduction on the D drive.

The command to compile a Java program using the Java 2 SDK is javac. To
compile the first program listed, you would issue the following command:

javac Example_1.java

Figure 0.6 illustrates how to use the compilation command in an MSDOS win-
dow. Unix and Linux users will use the same command but from a terminal
window.

The byte code produced by the compiler will be stored in a file called
Example_1.class. You should not try to edit or print a class file.

If you get errors listed in the MSDOS window, they could be caused by the fol-
lowing problems.

■ You have not modified the path entry of your autoexec.bat file correctly
and the computer cannot execute the command javac to compile your pro-
gram.

12 Chapter 0 Introduction

Figure 0.6 Using the compile command javac to compile a program in an MSDOS window

■ You have not modified the CLASSPATH entry in your autoexec.bat file
correctly and the computer cannot find any reference to the avi sub-
directory.

■ You have made a mistake when typing the program, and the syntax of at
least one statement might be incorrect.

You should carefully examine all three cases and make any necessary amend-
ments before you recompile the program.

0.9 How to Execute (run) a Java Program

The program stored as Java byte codes is loaded into the memory of the com-
puter, and is read and translated by an interpreter. An interpreter will read the
byte code one “line” at a time, and translate each line, in turn, into a sequence of
commands that can be directly executed by the computer. There exist different
interpreters for different computers; for example, the interpreter for a PC will be
different from the interpreter for an Apple. Each of these interpreters can read
the same byte code, i.e., the same .class file, but will produce a different set of
executable instructions since each computer supports a different machine-
instruction set. The interpreter reads the respective byte codes and instructs the
computer to execute the meanings of the instructions.

If the compilation is successful, you can execute (run) the program. The
command to execute or run a Java program using the Java 2 SDK is java. To
execute the HELLO WORLD program you would issue the following com-
mand in the same window where you compiled the program:

java Example_1

Figure 0.7 illustrates how to execute the program by typing the command java
Example_1 at the prompt in the MSDOS window. Unix and Linux users will use
the same command but from a terminal window. By default, the java command
will use the appropriate .class file.

If the program has executed correctly, the output should appear as illustrated
in Figure 0.8. You can stop the program by clicking on the X in the upper-right

0.9 How to Execute (run) a Java Program 13

Figure 0.7 Using the execute command java to run a program from an MSDOS window

Figure 0.8 A screen shot from running program Example_1

corner of the window, by choosing Close from the pull-down menu that appears
when you click on the coffee-cup icon in the upper-left corner of the window, or
by pressing the Alt-F4 key combination.

To summarize, the sections on inputting and saving a program (phase 1),
compiling a program (phase 2), and executing a program (phase 3) are illus-
trated in Figure 0.9.

It is possible for a program to fail during the execution phase, in which case
it must be stopped from any further execution. If modifications to the program
are required, it is necessary to perform the amendments at phase 1, and repeat
phases 2 and 3.

14 Chapter 0 Introduction

program keyed in
from document

Phase 1

program stored on
disk in text mode

Phase 2

program as series
of byte codes is
stored in memory

program stored on
disk in text mode

program stored on
disk in a series of
byte codes

resultsPhase 3

Editor

Compiler

Interpreter

data

Figure 0.9 Three phases of program implementation

0.10 SDK Tools

In order to build Java programs on your computer, the SDK contains a set of
tools for compiling and executing your programs, plus a variety of other utilitar-
ian features. Return to the index page of your documentation (now you know
why we said iconize the index page for future use), and search down the index
page for the heading SDK Tool Documentation. Under the heading, mouse-
click on the hot link Tool Documentation. The two tools that you used in this
chapter and that you will use extensively throughout this book are:

■ javac—the Java Language Compiler that you use to compile programs
written in the Java programming language into bytecodes.

■ java—the Java Interpreter that you use to run programs written in the Java
programming language.

Take your time to browse through the SDK tool documentation using your
mouse pointer to click on the hot links for each tool command. This way you
will be given a full explanation of the function of each tool.

Look up the javadoc entry and read how to document Java code.

Using the editor, modify program Example_1 as follows.

(1) Locate the line of the program that contains the text HELLO WORLD and mod-
ify this line to display a message of your own choice on the screen.

(2) Save and re-compile the amended program. If the program is error free after
compilation, then run the program.

NOW DO THIS

0.11 Copying and Editing Programs from the CD 15

You may need to change the properties of the programs you copied from the CD, from
Read-only to Archive. Failure to do this will result in your not being able to save any modifi-

cations you make to the programs on your hard disk.

!

0.11 Copying and Editing Programs from the CD

In addition to containing the AVI, the CD that accompanies this book contains
all of the book’s example programs and numerous sound and image files that are
used by those programs. As you work through the book, it is crucial for you to
copy the sample programs and support files from the CD onto your computer.
You will then be able to execute and interact with the programs. Additionally,
we have included throughout the book many hands-on exercises related to the
example programs. Performing these exercises (many are contained in “Now Do
This” sections while others are included in end-of-chapter exercises) will help
you learn object-oriented programming with Java.

Load the CD into your computer’s CD drive now and use your operating
system tools to examine the directory structure of the CD. (Remember, if you
do not have a CD drive, all of the files are also available on the textbook’s Web
site.) You will see that the sample program files are organized by chapter num-
ber.

Depending on how you prefer to work, you may want to copy the entire
sample program directory structure right now onto a suitable location on your
computer. Alternatively, you could copy the files on an as-needed basis, as you
progress through the book. In any case, you should probably use the same file
subdirectory structure on your hard drive as is used on the CD.

For purposes of this introduction, you should now use your operating sys-
tem’s copy command to copy the file Example_2.java from the
Introduction subdirectory of the CD into an appropriate directory on your
computer’s hard drive. It’s up to you whether you take this opportunity to copy
all of the files or not. Altogether, the program and support files require about 30
MB of memory.

Following the same steps described previously for the first example, compile and
run Example_2.java.

You should see a window called Example_2.java open on your screen with
a dialog box asking you to enter your name. Type your name into the dialog box,
and press the Return key. If the name Mickey Mouse is input into the box, the
dialog box would appear the same as shown in Figure 0.10.

The output on the screen should appear to be similar to the screen-shot of
Figure 0.11 if the name Mickey Mouse was entered into the dialog box.

16 Chapter 0 Introduction

Figure 0.10 A dialog box used to input a name

Figure 0.11 Screen shot from running program Example_2

Congratulations. You are now set to begin your study of Object-Oriented
Programming with Java.

1. Using your editor, open program Example_2.java.

2. Locate those lines in the program that print the message, and change the
message to one of your own choice.

3. Save the program (remember the original file must be saved in Archive
mode).

4. Compile and run the modified program.

NOW DO THIS

Summary 17

S U M M A R Y

You should now be able to perform the following tasks:

■ Gain access to the Internet to download software from the java.sun.com
Web site.

■ Install the Java 2 Software Development Kit on your computer.

■ Install the Audio-Visual Interface package that is used throughout the book to
simplify input and output.

■ Implement a program on a computer:

—by using an editor to key a program into the computer.

—by compiling the program into byte codes.

—by using an interpreter to execute or run the byte-code program.

■ Copy the files from the CD enclosed with this book to your computer. Load
and run one of the copied programs.

■ Modify an existing program.

This page intentionally left blank

C H A P T E R 1

Primitive Data Types
and Arithmetic
We start our exploration of the Java language by examining the
different characteristics of data such as type and size, and introduce
you to the data types for numbers and characters. We also examine
how to perform arithmetic on numbers in Java.

To reinforce these concepts, the chapter contains several example programs
to show you how to declare data types and perform calculations.

By the end of the chapter you will have an understanding of the following
topics.

■ Recognizing data and classifying it by type

■ The identification of variables and constants and their representation in a
program

■ The construction of arithmetic expressions for the purpose of making calcula-
tions

■ Writing simple programs

19

20 Chapter 1 Primitive Data Types and Arithmetic

Figure 1.1 An assortment of signs

1.1 Data

Before we attempt to write any computer programs, we must be able to classify
information into various types. We are surrounded by information; just look at
the assortment of signs in Figure 1.1 that we may encounter. This information
can be classified as either characters or numbers. From the signs you can identify
single characters such as P (for Parking) or T (weight limit in Tons); you can also
see groups of characters such as WEAK BRIDGE, CAFÉ, breakfast, or soups;
and numbers such as 10 (in the 10 T weight limit for the weak bridge) or 2 (in
the waiting limited to 2 hours).

Figure 1.2 contains information from a newspaper and from a bank state-
ment. In the newspaper extract you can find a listing of world share markets
that contains groups of characters representing a name of a market, followed by
a numerical value. For example, FTSE All-Share yield (%) �0.03 and Dow
Jones Industrial +91.36 both show the change in the value of portfolios of
shares over a week. From the bank statement a similar format exists; for exam-
ple, BALANCE BROUGHT FORWARD 1225.11 shows the balance from the
previous bank statement, and BRITISH GAS 21.00 tells the charge for a direct
debit on the cost of gas.

Data is the name given to characters and quantities operated upon by a com-
puter. For example, in the bank statement in Figure 1.2, the name of the com-
pany is a group of characters and the charge for gas is a quantity. A computer
program consists of a series of instructions for the computer to execute and pro-
vides a method for processing data. The data from bank transactions can be
processed by a computer into information for bank statements.

From the information shown in the two figures, we can identify four data
types: integer (a positive or negative whole number), real (a positive or negative
number with a decimal fraction), character (a single character), and a string (a

1.2 Data Storage 21

Figure 1.2 Information from a newspaper and bank statement

group of characters). For example, in Figure 1.1 the numbers 2 and 10 are both
whole numbers and can be classified as integers. In the same figure, the single
characters P and T can be classified as characters, and the groups of characters
WEAK BRIDGE, CAFÉ, sandwiches, and soups can be classified as strings. In
Figure 1.2, the numbers 1225.11, 21.00, �0.03, and +91.36 are positive or neg-
ative numbers containing a decimal fraction and can be classified as reals.

1.2 Data Storage

Figure 1.3 shows two memory chips from a digital computer. The term digital
implies that all information is represented by numbers within the computer.
Computer memory is composed of many millions of storage cells. The unique

22 Chapter 1 Primitive Data Types and Arithmetic

Figure 1.3 Computer memory

A chip is a small section of a single crystal of semiconductor, usually silicon, that forms
the substrate upon which is fabricated a single semiconductor device or all the individual

devices comprising an integrated circuit. Chip is also an informal name for an integrated
circuit.

1i

numeric address of a group of cells identifies the location of the cells within the
memory. Figure 1.3 also illustrates several storage cell groups with addresses
from 20000 to 20005, which contain information represented by levels of elec-
trical charge. The levels are shown as a series of peaks and troughs.

A binary digit or bit has one of two possible values and is the smallest unit of
memory available on a computer. In a computer, a bit is represented by some
physical property that can be in one of two states: on or off, open or closed, high
charge or low charge (as shown in Figure 1.3). It is standard practice to repre-
sent the contents of a bit with the numbers 0 or 1.

1.2 Data Storage 23

A single bit can therefore distinguish between two values. For example, it
could represent a door being open as a 0 and the door being closed as a 1. It
could represent the temperature being cold with a 0 and being hot with a 1. To
represent more than two values we need to use more bits. For example, we could
classify the temperature into four categories by using two bits as follows: 00 =
cold, 01 = pleasant, 10 = warm, and 11 = hot.

Every time we add a bit, we double the number of values we can represent.
With three bits we can represent 23 = 8 values (000, 001, 010, 011, 100, 101,
110, 111), with four bits we can represent 24 = 16 values, and so on. A collec-
tion of eight bits is called a byte and can represent 28 = 256 values. Bytes are
often used as the unit of addressing in computers, and therefore we describe
the size of computer memories in terms of bytes. Figure 1.3 illustrates the
storage of several bytes. The figure illustrates that within memory address
20003, the levels of electrical charge represent the series of bits 11010101.
Each memory address in the illustration is capable of holding a byte of infor-
mation. Each memory chip pictured in the figure has a storage capacity of
four megabytes! A megabyte is 1,048,576 bytes (220 bytes) and not 1,000,000
as the name implies.

In many programming languages, including Java, programmers use variables
to hold data whose values can change during the execution of a program. A
variable is a named memory location that can hold a particular type of data. For
example, the following statement in a Java program will reserve a memory loca-
tion called count that can hold data of type integer.

int count;

This statement is called a type declaration since it declares that the variable count
must hold data of type integer. We say that the data type of count is int. We will
return to this discussion of variables and type declarations in Java soon. First we
continue our general discussion of data storage.

Number Systems
We use the decimal number system (base 10) in our everyday lives for our
numerical calculations. There is nothing sacred about the number 10, and num-
ber systems using a different number of digits have been used throughout
human history. In particular, with computers it is more efficient to use the
binary number system (base 2) for calculations inside the machine.

Despite all information being stored in the computer in a binary format,
there is no equivalent representation for binary numbers in Java. The hexadeci-
mal number system is used in Java as a shorthand representation of binary
numbers. Figure 1.4 shows that a hexadecimal digit can be conveniently repre-
sented by four bits; for example, the four bits 0000 represent hexadecimal digit
0, the four bits 0001 represent hexadecimal digit 1, the four bits 0010 represent
hexadecimal digit 2, and, finally, the four bits 1111 represent hexadecimal
digit F.

24 Chapter 1 Primitive Data Types and Arithmetic

Binary Decimal Hexadecimal

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

Figure 1.4 Representation of 0 to 15 in binary, decimal, and hexadecimal

From Figure 1.4 you will notice that the hexadecimal digits 0 to 9 are the
same as those for a decimal number, however, to represent the six extra hexadec-
imal digits, it is necessary to use the letters A to F, which are equivalent to the
decimal numbers 10 to 15.

The decimal system is a positional number system that uses the ten digits
from 0 to 9 to represent numbers. The binary and hexadecimal number systems
work exactly the same way as the decimal number system. Just as the decimal
number 573 really means 5 � 102 + 7 � 101 + 3 � 100, the binary number 101
means 1 � 22 + 0 � 21 + 1 � 20, and the hexadecimal number 31E means 3 �
162 + 1 � 161 + 14 � 160. In Java, hexadecimal integer numbers are prefixed by
0x, for example, 0x31E.

The remainder of this section explains how data of types called character,
integer, and real are organized in the computer’s memory. The explanation of
the data type for a string is covered in Chapter 2.

Characters Many computer languages use the ASCII character code to repre-
sent characters. ASCII stands for the American Standard Code for Information
Interchange. Its extended version uses a byte to represent a character and can
therefore represent 28 = 256 different characters. This is enough to represent all
the characters on a typical keyboard but is not enough to represent all the spe-
cial symbols we might want to use with computers, especially when you consider
the different symbols used around the world in all the different languages.

Therefore, the creators of Java decided to base their language on the
Unicode character set, a set that uses 16 bits per character. Each character

1.2 Data Storage 25

The Unicode Worldwide Character Standard is a character coding system designed to repre-
sent the characters of the languages of the modern world. Currently, the Unicode standard

contains 34,168 distinct coded characters. The characters used in the computer programs in
this book are confined to those illustrated in Figure 1.5. This character set is known as the ASCII
character set. Notice that each Unicode character has been defined as a four-digit hexadecimal
number.

1i

requires two bytes of storage space in memory. The Unicode character set can
represent 216 = 65,536 different symbols and contains the ASCII character set as
a subset! The complete mapping of codes onto symbols is not yet complete.

The type declaration for a character is declared in Java as char. For example,
the following Java statement declares a variable called myChar, of type char.
This variable can hold a character as a value, and in fact is initialized to the
character 'A' in this statement.

char myChar = 'A';

Again, we will return to variables and type declarations in more detail soon.
A character literal is always delimited by single quotes; for example, the

character literal A is written as 'A'. The term literal refers to the stated value. In
Java, a character literal may also be expressed by its Unicode character. A
Unicode character is prefixed by \u to distinguish it from a numeric literal. The
character literal 'A' may also be written as '\u0041' (see Figure 1.5 for the
appropriate unicode and corresponding character); however, this representation
is not as clear as using the literal value of the character. Refer to Appendix A,
Table A.1 for the character subset from '\u0000' to '\u007E'.

Integer numbers An integer is stored as a binary number. In Java there are
several integer data types. The one we will be using most frequently is declared
as int and uses four bytes of computer memory. Therefore, an int can repre-
sent any of 232 = 4,294,967,296 different integers. The range of int values is
�2,147,483,648 to +2,147,483,647.

If you want to store an integer number that lies outside of the range for int
types, then use the Java type long. These numbers are represented with eight
bytes (64 bits) and have a range of �9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807.

The use of a plus sign (+) is optional for positive integer literals. All decimal
integer literals must begin with a digit in the range from 1 to 9 after the sign (if
a sign is present). Integer literals must not begin with 0 (zero). A long integer
literal, either decimal or hexadecimal, has the character l or L appended imme-
diately after the number.

26 Chapter 1 Primitive Data Types and Arithmetic

Unicode Character Unicode Character Unicode Character

0020 space 0040 @ 0060 '
0021 ! 0041 A 0061 a
0022 " 0042 B 0062 b
0023 # 0043 C 0063 c
0024 $ 0044 D 0064 d
0025 % 0045 E 0065 e
0026 & 0046 F 0066 f
0027 ' 0047 G 0067 g
0028 (0048 H 0068 h
0029) 0049 I 0069 i
002A * 004A J 006A j
002B + 004B K 006B k
002C ’ 004C L 006C l
002D – 004D M 006D m
002E . 004E N 006E n
002F / 004F O 006F o
0030 0 0050 P 0070 p
0031 1 0051 Q 0071 q
0032 2 0052 R 0072 r
0033 3 0053 S 0073 s
0034 4 0054 T 0074 t
0035 5 0055 U 0075 u
0036 6 0056 V 0076 v
0037 7 0057 W 0077 w
0038 8 0058 X 0078 x
0039 9 0059 Y 0079 y
003A : 005A Z 007A z
003B ; 005B [007B {
003C < 005C \ 007C |
003D = 005D] 007D }
003E > 005E ^ 007E ~
003F ? 005F _

Figure 1.5 Printable character set

Real numbers A real number is stored in the computer memory in two parts,
a mantissa (the fractional part) and an exponent (the power to which the base of
the number must be raised in order to give the correct value of the number when
multiplied by the mantissa). For example, 437.875 can be rewritten as 0.437875
� 103, where 0.437875 is the mantissa and 3 is the exponent. A four-byte repre-
sentation of a real number will give a maximum value of �3.40282347 � 1038

and the smallest value as �1.40239846 � 10�45. The majority of decimal frac-
tions do not convert exactly into binary fractions; therefore, the representation
of a real number is not always accurate.

In Java, the type real is declared as float.
If the float range is too restrictive for the real numbers being stored, Java can

store much larger real numbers using the type double. The number of bytes

1.3 Identifiers 27

All real literals in Java are stored in double-precision (double) by default. To distinguish a
single-precision literal, that is, a real number stored as float, from its default value,

append the letter f or F after the number. For example, —123.456f or —1.23456E+2f.
Although it is not strictly necessary, a double-precision real literal may have the letter d or D
appended after the number.

1i

used to store a double-precision number is increased to eight. This increase in
storage space will give a maximum value of �1.79769313486231570 � 10�308

and the smallest value as �4.94065645841246544 � 10�324.
A real-number literal can be written in one of two ways. For example, the

literal �123.456 can be written as depicted or using a scientific notation
�1.23456E+2. The character E represents the base 10, so the number can be
interpreted as �1.23456 � 102, which, of course, evaluates to �123.456 when
you adjust the decimal point.

The data types char, int, long, float, and double are known as primitive
data types. Only a selection of the primitive data types that you are likely to use
in this book have been presented. For the complete set of primitive data types,
turn to Appendix A, Table A.2.

1.3 Identifiers

Data may be thought of as occupying areas of the computer’s memory in the
same way as people occupy houses in a street. To distinguish different families in
different houses, we could use either the surname of the family or the number of
the house. To distinguish data in different areas of memory, we could give the
data a name or use the numeric memory address of the first byte of the address
in which the data is stored.

In Java it is much easier to refer to data by name and let the computer do the
work of finding out where in memory the data is stored. Figure 1.6 illustrates
the use of names to represent data stored at memory addresses. The generic
term for the name you give to a datum is an identifier. Java uses the following
rules for the composition of identifiers.

An identifier may contain combinations of the letters of the alphabet (both
uppercase A-Z and lowercase a-z), an underscore character _, a dollar sign $,
and decimal digits 0-9. The identifier may start with any of these characters
with the exception of a decimal digit.

Java is a case-sensitive language, meaning that uppercase letters and lowercase
letters of the alphabet are treated as different letters. Identifiers can normally be
of any practicable length. An identifier must not be the same as those Java key-
words listed in Figure 1.7. A programmer uses keywords to construct statements

28 Chapter 1 Primitive Data Types and Arithmetic

abstract default goto operator synchronized
boolean do if outer this
break double implements package throw
byte else import private throws
byvalue extends inner protected transient
case false instanceof public true
cast final int rest try
catch finally interface return var
char float long short void
class for native static volatile
const future new super while
continue generic null switch

Figure 1.7 Keywords

Resist the temptation of beginning an identifier with an underscore _ or using a dollar sign $
in your identifiers. Often such characters are used in other variables by the computer.

!

Address Contents Identifier

20000

20001

20002

20003

20004

20005

20006

20007

20008

20009

1999 year

A letter

0.175 tax

Figure 1.6 Use of identifiers to represent data

in a program for the computer to obey. Therefore, we will use keywords in pro-
gram statements, but not as identifiers.

The words in Figure 1.7 that appear in black are reserved by Java, but are
currently unused.

A programmer should always compose identifiers so they convey meaning.
The identifiers name, street, town, and zipcode imply the meaning of the
data that they represent, unlike the non-descriptive identifiers N, S, T, and Z.
When an identifier is constructed from more than one word, each successive
word should begin with an uppercase letter; an identifier should be easy to read,
and its meaning should be clear.

Examples of legal identifiers are subTotal, salesTax, unitCost, and
rateOfPay.

1.4 Syntax 29

SYNTAX

SYNTAX

Assignment Statement: identifier = literal;
identifier = identifier;
identifier = expression;

1.4 Syntax

In the Introduction, it was stated that one cause of your program not compiling
correctly was making a mistake when typing the program and causing the syn-
tax of at least one statement to be incorrect. The syntax is the grammar of the
statement construction. Java, like the majority of computer languages, has spe-
cific rules on how you construct programs using the language.

Throughout each chapter you will come across syntax icons identical to the
one shown here.

The syntax described under this icon is for quick reference only—the full
syntax of the language can be found in Appendix B.

Many beginners to computer programming find difficulty in getting the
syntax of a program correct, even after several attempts. To the student, not
being able to understand the syntax of the language is one of the most frustrat-
ing areas in programming, since it becomes difficult to interpret the syntax
errors that are listed by the compiler.

As an example of how we will describe syntax, we will look at the Java
assignment statement. An assignment statement assigns a value to a variable.
For example, if count has been declared as a variable of type int as shown in
Section 1.2, then the following statement assigns the value 7 to count.

count = 7;

The syntax of the assignment statement is given as follows.

These statements express the grammar of assignment and illustrate how lan-
guage statements are constructed. Within the syntax description we use both termi-
nal symbols and non-terminal symbols. The terminal symbols are shown in a color
monospace font, and non-terminal symbols in an italic typeface. Terminal symbols
cannot be defined further, unlike non-terminal symbols that can be defined in other
syntax definitions.

30 Chapter 1 Primitive Data Types and Arithmetic

If an identifier is specified by the word tax, then according to the rules of
the syntax of an assignment statement the following statements are legal.

tax = 135.86; where 135.86 is a numeric literal
tax = incomeTax; where incomeTax is another identifier
tax = 0.175*cost; where 0.175*cost is an expression

By using the rules of assignment, it is easy to understand that the following
statements are illegal.

135.86 = tax; this implies the syntax literal =identifier (wrong)
tax = incomeTax statement delimiter ; missing (wrong)
0.175*cost = tax; this implies expression = identifier (wrong)

The terminal symbols in these examples are the assignment symbol =, the
multiplication operator *, and the statement delimiter ; The identifiers are tax,
incomeTax and cost.

As described in the previous section, an identifier is an unlimited-length
sequence of Java letters and Java digits, the first of which must be a Java letter.
An identifier cannot have the same spelling as a keyword, Boolean literal, or a
null literal. These facts are represented formally by the following notation found
in Appendix B.

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral

IdentifierChars:
JavaLetter

IdentifierChars JavaletterOrDigit

JavaLetter:
any Unicode character that is a Java letter

JavaLetterOrDigit:
any Unicode character that is a Java letter-or-digit

From these definitions it should be clear that examples of acceptable identifiers
are:

tax, incomeTax and cost.

1.5 Variables and Constants 31

SYNTAX

Variable Declaration: data-type identifier;
data-type identifier-list;

Examples of illegal identifiers would be:

0Finance begins with a digit; this violates the rule that an
identifier must begin with a Java letter.

Mr.Jones the period is not a legal identifier character.
final this is a Java keyword and cannot be used as an

identifier.

1.5 Variables and Constants

A Java program contains data declarations and instructions. The data declara-
tions must appear before the instructions, since the declarations describe the
type of data used by the instructions. Although a declaration may appear any-
where in a program, subject to the restrictions mentioned, you should attempt to
group your declarations before the instructions that use them.

If the values of the data in the storage cells can be changed by the instruc-
tions in a computer program, the values of the data will vary, and the data iden-
tifiers are known as variables. The syntax for making a variable declaration
follows.

For example, the data declarations for a sample of the information displayed
in Figures 1.1 and 1.2 might be:

int weightLimit;
int parkingTime;
float balance;
float costOfGas;
float valueOfShares;

When variables are of the same type, you may declare the type followed by a list
of identifiers separated by commas, for example:

int weightLimit, parkingTime;
float balance, costOfGas, valueOfShares;

32 Chapter 1 Primitive Data Types and Arithmetic

SYNTAX

Variable Initialization: data-type identifier = literal;

SYNTAX

Constant Declaration: final data-type identifier = literal;

Variables can be initialized (set to an initial value) by the programmer at
their point of declaration, using the following syntax. Note that these state-
ments both declare and initialize the variables.

For example, the data of Figures 1.1 and 1.2 can be initialized as follows:

char parkingSymbol = 'P';
int weightLimit = 10;
float balance = 1225.11f;

Reminder! Notice the use of f after the value 1225.11. The f signifies that
the numeric literal is stored as a single-precision value. This is an important
point to remember since real numeric literals are stored in double-precision
form by default.

Many programs have data values that remain constant during the running of
the program. Examples of constants are sales tax at 5% (0.05f), mathematical
PI at 3.14159, and Earth’s gravitational constant (G) at the surface, 9.80665
ms�2. Rather than using the literal value of a constant in an expression, it is far
better to name the constant, thus giving greater clarity to the expression in
which the constant is found. If you use this technique, your program does not
become littered with numbers that have meanings that can be difficult to under-
stand.

The syntax for a constant declaration follows.

Such constants can be declared in Java as follows.

final float SALES_TAX = 0.05f;
final double PI = 3.14159;
final float G = 9.80665f;

The keyword final implies that the constant identifier is initialized to a value
that will not change during the execution of the program. Convention dictates

1.6 The Format of a Simple Program 33

heading giving details of the name and purpose of the program

import list

class name
{

main method
{

declarations of constants
declarations of variables
program statements

}
}

that constant identifiers should be coded in uppercase letters to distinguish
them from variables in a program—hence the identifiers SALES_TAX, PI, and G.

1.6 The Format of a Simple Program

Before we look at the first of three short programs in this chapter, it is necessary
to give you a feel for how a simple Java application program is constructed. The
following template may be used for constructing a simple Java application pro-
gram, and will be used in this and the next chapter to provide you with a frame-
work for inserting statements into the program.

For the moment, we ask you to accept the contents of the template. By the end
of Chapter 2, each component in this template will have been explained.

In the first of the three programs, three variables are initialized at their point
of declaration, and their values are output to the screen.

From the template you can see that the declaration of variables is performed
within an area of the program characterized by a statement that contains the
keyword main.

In the following program, the text in color illustrates where declarations of
the variables can be written in the context of a complete program. In general,
declarations of variables must always be made before the variables are used. At
this stage you are not expected to understand the remainder of the statements in
the program.

34 Chapter 1 Primitive Data Types and Arithmetic

// program to illustrate the declaration and initialization of
// variables

import avi.*;

class Example_1
{

public static void main(String[] args)
{

char parkingSymbol = 'P';
int weightLimit = 10;
float balance = 1225.11f;

Window screen = new
Window("Example_1.java","bold","blue",36);

screen.showWindow();
screen.write("\n\tParking symbol is "

+parkingSymbol+"\n\n");
screen.write("\n\tWeight limit is "+weightLimit+

"tons\n\n");
screen.write("\n\tBalance is $"+balance+"\n");

}
}

The following screen shot shows the program’s results.

1.7 Arithmetic 35

Modify the statements in program Example_1.java.

(1) Replace the variables with the constants SALES_TAX, PI, and G that are
described in the previous section.

(2) Modify the screen.write statements to display the values of the three con-
stants on the screen.

(3) Compile and run the modified program.

NOW DO THIS

1.7 Arithmetic

Arithmetic operations are among the most fundamental instructions that can be
included in a program. The following symbols are used to perform arithmetic on
data stored in memory.

Unary Operators
+ unary plus
� unary minus

Unary operators have one operand and are used to represent positive or negative
numbers.

Binary Multiplicative Operators
* multiplication
/ division
% remainder

Note that the % operator will compute the remainder after the division of two
numeric values; for example, 33%16 computes the remainder 1 after 33 is
divided by 16; 16%33 computes the remainder 16 after 16 is divided by 33. (The
result of the division is 0, remainder 16.)

Binary Additive Operators
+ addition
� subtraction

Both multiplicative and additive operators have two operands.

To understand arithmetic operations, it is helpful to conceptualize how a
computer uses memory. In the previous section we saw how data can be referred
to by name in the memory of a computer. Figure 1.8 illustrates numbers being
referred to by the names total, subTotal, and tax in three separate locations
in memory before arithmetic operations are applied to the data.

Arithmetic may be performed on this data and the result assigned to a mem-
ory location, using the assignment operator = . The syntax of an assignment
statement has already been given in Section 1.4.

36 Chapter 1 Primitive Data Types and Arithmetic

16 12Before

total subTotal tax

5

Figure 1.8 Numbers stored by identifier

Result of computation
total = subTotal + tax;

16 12After

total subTotal tax

28

Figure 1.9 Result of the computation total = subTotal + tax

For example, the assignment statement total = subTotal + tax adds the
contents of subTotal to the contents of tax and stores the result in total,
destroying or overwriting the previous contents of total. Therefore, after the
computer executes the statement total = subTotal + tax, the contents of
total is changed. The result of the computation is shown in Figure 1.9.

Similar before-and-after situations can be applied to the following computa-
tions.

total = score - penalty;
tax = price * taxRate;
time = distance / speed;
result = sum % divisor;
counter = counter + 1;

The results of the arithmetic from these statements are illustrated in Figure
1.10.

The destination of an assignment will always be on the left-hand side of an
assignment statement. For example, score = 9 implies that score is assigned
the value 9. The statement 9 = score has no meaning since 9 is not a legal
identifier. However, score = result implies that score is assigned the value
of result, whereas result = score implies that result is assigned the value
of score.

In the last example in Figure 1.10, the expression counter = counter + 1
may seem a little unusual since the variable counter appears on both sides of
the expression. The statement should be read as follows: On the right-hand side
of the expression, the current value of counter (3) is increased by 1, giving a
result of (4). This result is then assigned to the variable on the left-hand side of
the expression, which also happens to be the variable counter. The old value of
counter (3) is overwritten or destroyed by the new value (4). The effect of
this statement has been to increase the value of the variable counter by 1.

1.7 Arithmetic 37

time distance speed

50.0Before 120.0 60.0

2.0After 120.0 60.0 Result of computation
time = distance / speed;

tax price taxRate

1.5Before 20.0 0.05

1.0After 20.0 0.05 Result of computation
tax = price * taxRate;

total score penalty

100Before 100 4

total score penalty

96After 100 4 Result of computation
total = score = penalty;

result sum divisor

19Before 37 15

result sum divisor

7After 37 15 Result of computation
result = sum % divisor;

counter

3Before

counter

4After
Result of computation
counter = counter + 1;

time distance speed

tax price taxRate

Figure 1.10 Results of various computations

The second program illustrates how to use a constant in a program. In
Europe, there is a taxation known as the value added tax (VAT). This tax is
applied to the cost of many goods and services, and, in the UK, currently stands
at 17.5%. The second program illustrates a simple shopping bill where the costs
of three consumer products are summed, VAT is applied to the sum, and the
total for the purchases is displayed.

Those statements that you are expected to understand at this stage are
shown in color in the program.

38 Chapter 1 Primitive Data Types and Arithmetic

// program to illustrate the use of arithmetic statements

import avi.*;

public class Example_2
{

public static void main(String[] args)
{

// declaration of a constant
final float VAT = 0.175f;

// declaration of variables
float cdPlayer;
float amplifier;
float speakers;
float subTotal;
float tax;
float total;

// assign values to the goods purchased
cdPlayer = 75.00f;
amplifier = 99.00f;
speakers = 56.00f;

// calculate sub total of goods
subTotal = cdPlayer+amplifier+speakers;

// calculate value added tax
tax = VAT * subTotal;

// calculate total cost
total = subTotal + tax;

// display shopping bill
Window screen = new Window("Example_2.java","plain","blue",36);
screen.showWindow();

screen.write("HI FI Bulk Discount Stores\n\n");
screen.write("CD Player\t\t"+cdPlayer+"\n");
screen.write("amplifier\t\t"+amplifier+"\n");
screen.write("speakers\t\t"+speakers+"\n\n");
screen.write("sub-total\t\t"+subTotal+"\n");
screen.write("VAT\t\t"+tax+"\n");
screen.write("TOTAL \t\t"+total+"\n");

}
}

1.7 Arithmetic 39

The results appear as follows.

Using the editor, modify the program Example_2 as follows.

(1) Change the name and value of the tax to the name used in your country.
Remember to change all references to the name in the program.

(2) Alter the purchases to five items of your own choice. Initialize the prices of
these five articles at the point of declaration.

(3) Modify the lines to calculate the sub-total, tax, and total.

(4) Change the name of the store to one applicable for your purchases.

(5) Change the names of the variables in the screen.write statements to
match the names of your chosen variables.

(6) Re-compile the program. If there are no errors, then run the program.

NOW DO THIS

40 Chapter 1 Primitive Data Types and Arithmetic

Priority Operator Operand Associativity Operation performed
level type(s)

1 + – arithmetic R unary plus, unary minus
(type) any R cast

2 * / % arithmetic L multiplication, division, remainder
3 + - arithmetic L addition, subtraction
13 = variable any R assignment

Figure 1.11 Priority levels of operators

1.8 Operator Precedence

Suppose an expression is written as A+B*C-D/E. How would it be evaluated?
There is a need to introduce a set of rules for the evaluation of such expressions.
All operators have an associated hierarchy that determines the order of prece-
dence for evaluating expressions. Unary operators have a higher order of prece-
dence than multiplicative operators, and multiplicative operators have a higher
order of precedence than additive operators (see Figure 1.11). A complete list of
operator priorities is given in Appendix A, Table A.2.

Expressions are evaluated by using operators with a higher priority before
those of a lower priority. Generally, where operators are of the same priority, the
expression is evaluated from left to right. Expressions in parenthesis will be
evaluated before nonparenthesized expressions. Parentheses, although not an
operator, can be considered as having an order of precedence after unary opera-
tors.

The expression A+B*C-D/E can be evaluated by inspecting the operators and
grouping operations according to the above rules. Since there are no parenthe-
ses, this expression is parsed from left to right, evaluating those operands whose
operators have the highest priority first. B*C is evaluated first, followed by D/E.
In parsing the expression for a second time, A is added to the result of B*C, and
finally the result of D/E is subtracted from this value. This process is illustrated
in Figure 1.12; the numbers indicate the order of evaluation. The equivalent
algebraic expression is given at each stage of the evaluation.

The expression (X*X+Y*Y)/(A+B) can be evaluated in the same way, as
illustrated in Figure 1.13. Since this expression is parenthesized, the contents of
both pairs of parentheses must be evaluated first. As multiplication has a higher
priority than addition, the X*X and Y*Y are evaluated before the two results are
added together. Similarly, A is added to B before the result is divided into the
result of the first parenthesized expression.

You should adopt the habit of using parentheses in order to make the mean-
ing of an expression as clear as possible. For example, the algebraic expression

can be written in Java as U*V/W/X; however, it is easier to understand

(U*V)/(W*X).

uv
wx

1.8 Operator Precedence 41

1 *

4 –

3 +

A + B * C – D / E

2

1. (B*C)

4. A + (B*C) - (D/E)

2. (D/E)

3. A + (B*C)

Figure 1.12 Evaluation of A + B * C - D / E

2 *

4 +

1 *

(X * X + Y * Y) / (A + B)

3 +

5

1. X2

2. Y2

3. (X + Y)
4. (A + B)

2 2

5. (X + Y) / (A+B)2 2

Figure 1.13 Evaluation of (X * X + Y * Y) / (A + B)

Similarly, can be written in Java as

(X*X)+(Y*Y)+4*(X+Y)/(Z*Z).
With the exception of the % remainder operator, which must have integer

operands, all other operators can have integer or real operands or a mixture of
both types. In a division, if both the operands are integer, then the result will
also be an integer, i.e., the fractional remainder in the result will be truncated.

x y
z

x y2 2
2

4+ + +()

42 Chapter 1 Primitive Data Types and Arithmetic

SYNTAX

Cast operation: (data-type)expression;

1.9 Casting

As described previously, the storage of integer and real numbers is organized
differently, and may use different amounts of memory. For example, the inter-
nal representation of the types int and float are organized differently, and
int and long as well as float and double use different amounts of memory.
Therefore, when operands are of different types, one or more of the operands
must be converted to a type that can safely accommodate all values before any
arithmetic can be performed.

Type conversion is performed automatically when the type of the expression
on the right-hand side of an assignment can be safely promoted to the type of
the variable on the left-hand side. For example,

long largeInteger = 123456789012345;
int smallInteger = 987654;

largeInteger = smallInteger;

This assignment involves the value of the variable smallInteger of type int
being promoted to type long for the purpose of performing the assignment.
However, the original type declaration int for the variable smallInteger does
not change.

Note that the assignment smallInteger = largeInteger; is not
allowed, since the value of the variable largeInteger cannot be promoted
from type long to type int without possible loss of digits.

Type conversion may also be explicit through the use of a cast operation. A
cast is an explicit conversion of a value from its current type to another type.
The syntax of this operation follows:

where data-type in parentheses indicates the type to which the expression
should be converted. For example,

float money = 158.05;
int looseChange = 275;
money = (float) looseChange;

1.9 Casting 43

The cast expression (float)looseChange is used to convert the value of the
variable looseChange to a number of type float. This does not imply that
looseChange has altered its type from int to float; only the value has been
converted to type float for the purpose of the assignment.

In the third example program of this chapter, two variables are declared and
assigned the values of 15 and 7, respectively. Calculations on the sum, differ-
ence, product, quotient, and remainder of these numbers are performed and the
results of these calculations are displayed on the screen.

// program to calculate the sum, difference, product, quotient,
// and remainder of two numbers

import avi.*;

public class Example_3
{

public static void main(String[] args)
{

// declare variables
int first;
int second;
int sum;
int difference;
int product;
int quotient;
int remainder;

// assign values to variables
first = 15;
second = 7;

Java will allow the statement smallInteger = (int)largeInteger; even though dig-
its may be lost in the assignment. However, it is the responsibility of the programmer to

ensure that casting will not result in any inaccuracy.

!

44 Chapter 1 Primitive Data Types and Arithmetic

// perform computations
sum = first+second;
difference = first - second;
product = first*second;
quotient = first/second;
remainder = first%second;

// output results of calculations
Window screen = new Window("Example_1.java","plain","blue",36);
screen.showWindow();

screen.write("Simple Mathematics\n\n");
screen.write(first+"+"+second+"="+sum+"\n");
screen.write(first+"-"+second+"="+difference+"\n");
screen.write(first+"*"+second+"="+product+"\n");
screen.write(first+"/"+second+"="+quotient+"\n");
screen.write(first+"%"+second+"="+remainder+"\n");

}
}

The following screen shot shows the results from running this program.

Summary 45

S U M M A R Y

■ Data is the name given to characters and quantities operated upon by a com-
puter.

■ The integer data types are int and long; the real data types are float and
double; the character data type is char. All five data types are known as
primitive types in Java.

■ Integers may be represented as either decimal or hexadecimal numbers.

■ The range of data that can be stored in a computer’s memory is limited by
the data’s type.

■ Data stored in the memory of a computer can be accessed through an identi-
fier invented by the programmer. Identifier names should be self-document-
ing.

■ Data names must conform to the rules for identifiers.

■ Numeric data that reside in memory locations can be manipulated by use of
the following operators: + (addition); - (subtraction); * (multiplication);
/ (division); % (remainder).

■ Arithmetic operations in Java are evaluated in order of highest to lowest
operator precedence. Expressions in parentheses have higher precedence

Recompile and rerun the program after each suggested
change.

(1) Compile and run the program as it is and note the output.

(2) Change the program so that the variable first is set to 25 instead of 15.

(3) Add two more integer variables called value1 and value2 to the program.

Assign value1 the expression 10 + 5 * 6.

Assign value2 the expression (10 + 5) * 6.

Add the appropriate output statements, so that you can see what values end
up being assigned to the two variables.

(4) Change the declarations of the variables quotient and remainder to type
float. What effect does that have on the program?

(5) Use casting within the computations of quotient and remainder. For
example, the calculation of the quotient could be written as:

quotient = (float) first / second;

What effect does that have on your program?

NOW DO THIS

46 Chapter 1 Primitive Data Types and Arithmetic

than nonparenthesized expressions. Where operators have equal prece-
dence, the expressions are generally evaluated from left to right.

■ The result of a computation is assigned to a variable using the = operator.

■ When operands are of different types, one or more of the operands must be
converted to the type that can safely accommodate the values before the
operation can be performed. The conversion can occur in one of two ways:
(1) implicitly, by which Java automatically converts the value on the right-
hand side of the assignment to the type of the variable on the left-hand side,
or (2) by the use of a cast operation, which the programmer must write into
the program code.

■ Variable declaration specifies the type of data followed by the name of the
data.

■ Variables may be initialized at the point of declaration.

■ Data values that do not change during the running of a program may be
declared as constants.

■ Constants must be initialized at the point of declaration.

Review Questions
True or False

1. Real numbers may be described as type float.

2. A character is stored as an integer value.

3. An identifier may begin with an underscore.

4. An identifier described as being constant may have its initial value changed by state-
ments in a program.

5. 0x3GF is a legal hexadecimal literal.

6. 032767 is a legal decimal literal.

7. Single-precision real constants contain the letter f after the number.

8. The multiplication operator has a higher priority than the subtraction operator.

9. The word return is a keyword.

Short Answer

10. Describe the meaning of the data types integer, real, and character.

11. How are the three types listed in Question (10) represented as data types in Java?

12. How would you declare an integer variable that had an initial value of 67AF?

Exercises 47

13. Distinguish between the mantissa and exponent of a real number.

14. What range of integers can be stored within four bytes?

15. What is the smallest real number that can be stored as type float?

16. What is a variable?

17. What is a constant?

18. Is the declaration of a constant final PI = 3.14159; correct?

19. Which operator calculates the remainder after the division of two integer numbers?

20. What is the result of the integer division 3/2?

21. If the variable counter has an initial value of 8, what is the value of
counter = counter + 1?

22. Describe the term operator precedence.

23. What is the result of evaluating the expression 2 * 6 + 20 / 4?

24. What does the expression (int)alpha do, if alpha is declared as a real number?

25. What is the difference when the expressions (float)(x/y) and
(float)x/(float)y are evaluated? Assume that both x and y are integers.

26. What is the Unicode representation for the letter H?

Exercises
27. From the illustration in Figure 1.14, discuss what you consider to be data and classify

the data by type as variables declared in Java.

28. Identify the illegal variable names in the following list of identifiers. Explain why the
names are illegal.

(a) priceOfBricks (b) net-pay (c) x1 (d) cost of paper

(e) INTEGER (f) ?X?Y (g) 1856AD (h) float

29. Describe the Java types for the following items of data:

(a) �64 (b) ';' (c) +156 (d) +2147483648

(e) 247.9 (f) 0.732E+01f (g) 0xAB0 (h) 23.96f

30. Use Figure 1.5 to determine the Unicodes of the following characters:

(a) A (b) M (c) * (d) a (e) m (f) 9

31. Write the following numbers using E notation for real numbers; only one nonzero digit
should precede the decimal point.

(a) �874.458 (b) +0.00123456 (c) 123456789.0

48 Chapter 1 Primitive Data Types and Arithmetic

COMMUTER RAIL FARES
Zone One-way Half-fare Monthly Family

Pass Fare

1 2.00 1.00 64.00 8.00
2 2.25 1.10 72.00 9.00
3 2.50 1.25 82.00 10.00
4 3.00 1.50 94.00 12.00
5 3.25 1.60 104.00 13.00
6 3.50 1.75 112.00 14.00
7 3.75 1.85 120.00 15.00
8 4.00 2.00 128.00 16.00

Figure 1.14 Commuter rail fares

32. Evaluate the following expressions.

(a) 10 / 4 (b) 10.0f / 4.0f (c) 5 + 7 * 3 (d) 5 * 7 + 3

33. Write suitable type declarations for the following constants:

(a) �45678 (b) 0xFABC (c) 3.14159 (d) '\u0041'

34. Convert the following hexadecimal numbers into decimal numbers, and convert the fol-
lowing binary numbers into hexadecimal numbers. Hint: To convert a binary number
into a hexadecimal number, split the binary number into groups of 4 bits starting from
the right-hand side of the binary number. Evaluate each group from the information
given in Figure 1.4.

(a) 0xFF (b) 0x1A2C (c) 01110011 (d) 0111001100001111

35. Given the original values as shown, what are the values of the following variables after
the execution of the respective assignments?

(a) B = A; A B C D

C = A; 36 98 45 29

D = A;

(b) D = A + B + C + D; A B C D

10 14 29 36

(c) A = B - 2; A B

17 50

(d) Y = X - Y; X Y

19 32

Programming Problems 49

(e) Z = X * Y; X Y Z

18 3 27

(f) B = B / A; A B

12.5 25.0

(g) X = A / B; A B X

16 3 25

(h) Y = C % D; C D Y

19 5 2

(i) D = D + 1 D

34

36. Write the following expressions in Java.

(a) (b) (c) (d)

(e) (f) (g)

37. Rewrite the following Java expressions as algebraic expressions.

(a) X + 2 / Y + 4 (b) A * B / (C + 2) (c) U / V * W / X

(d) B * B – 4 * A * C (e) A / B + C / D + E / F

Programming Problems
Refer to the three example programs in the text to help you to write programs as answers to
the next three questions. Compile and run the programs.

38. Write a program to calculate and output the distance traveled by a car on a tank of gas.
Assume figures for the capacity of the tank and the average rate of gas consumption per
mile by the car.

39. Write a program to convert any amount of US dollars into any chosen world currency
and output your results. Write the conversion factor for the currency of your choice as a
constant.

40. Write a program to convert a temperature in degrees Fahrenheit to degrees Celsius. The
formula for conversion is Celsius = (Fahrenheit � 32) * (5/9).

AX BX C2 + +B AC2 4−A B C D−() −()

A B2 2

2

+()D B
A
−

2
W X
Y Z

−
+

A B
C
+

This page intentionally left blank

C H A P T E R 2

Objects
This chapter introduces you to classes, which are the primary build-
ing blocks for Java programs. A class is an extension of a data type.
Classes are used to create objects.

The first example of a class that you will see is the String class. Unlike the
primitive data types discussed in the previous chapter, strings are declared by
using a class. This chapter explains the format of a class, and shows how a
class may be used to create an application program.

We also look at the input of data to a program and the output of information
from a program, and the structure of simple Java programs. We introduce our
audio-visual interface package avi that allows beginning Java programmers to
create interesting multimedia interfaces to programs.

By the end of the chapter you should have an understanding of the following
topics.

■ Some fundamentals of packages, classes, objects, and methods

■ Input and output using a graphical user interface

■ Writing simple programs

■ Using the command line to input data

■ Syntax, run-time, and logical errors

51

52 Chapter 2 Objects

Using your Java documentation and a Web browser, follow
these instructions.
(1) Open the installed directory jdk1.2.2, then open the docs folder. Mouse-

click on the index within this folder, and this should take you into the Java 2
SDK, Standard Edition Documentation.

(2) Scroll down to the section marked API & Language Documentation and
mouse-click on Java 2 Platform API Specification (API is an acronym for
Application Programming Interface). Mouse-click on the java.lang package,
and mouse-click again on the String class.

(3) Investigate the documentation of this class.

NOW DO THIS

2.1 Introduction to Objects

In an object-oriented language such as Java, the emphasis is on combining
(known in computing jargon as encapsulating) data with segments of program
code that access and manipulate the data. Objects permit this encapsulation and
form the backbone of the Java language. In this section we will introduce several
object-related terms and ideas, using strings as an example. You should not worry
if at first you feel somewhat overwhelmed with the terminology and concepts. As
we progress through the book you will become more comfortable with the ideas.

As mentioned above, an object encapsulates data and a set of operations that
access and manipulate the data. For example, a program to help manage a bank
might maintain thousands of BankAccount objects, each holding data (owner
name, balance, interest rate) about a particular bank account and each allow-
ing a set of operations (deposit, withdraw, balance, printStatement) that
affect the data or return information about the data. A String object will hold a
string such as "HELLO WORLD" and allow the programmer to perform operations
that return information about the string such as its length, or to return new strings
related to the original string, such as a copy of the string in all lowercase letters.

Objects are created from templates, called classes. A class may define both
the type of data and the operations that can be performed on the data. These
operations are segments of program code, known as methods. Once a class is
defined, it can be used to create, or instantiate, many objects. Sometimes we
refer to these objects as instances of the class. As a Java programmer, you will
define your own classes and use them to instantiate objects to help you solve
problems—but more of this in the next chapter! There are also numerous prede-
fined classes for your use as a programmer.

If you inspect the Java documentation you were asked to install during the
Introduction, you will find listings of all the predefined classes found in the Java
language. You will see that the Java API is arranged in a hierarchical structure.
Figure 2.1 attempts to capture the nature of this hierarchy.

In the Java API, classes that are related to each other are grouped together
into packages. In fact the number of packages increases with every new release

2.2 The String Class 53

public final class String ...
{

// constructors
public String () ;
public String (String value) ;
.

// instance methods
public String concat (String str) ;
public int length () ;
public String replace (char oldChar,

 char newChar) ;
public String toUpperCase () ;

 .
.

}

java.applet Boolean

Math

String

Void

java.awt

java.io

java.lang

java.util.zip

packages forming
part of the Java API

a single package such
as java.lang will contain
many different classes

the single class String contains a number
of methods that are applicable to the
creation and manipulation of strings

.

.

.

.

.

.

.

.

.

.

.

.

Figure 2.1 Packages and classes

of the Java language. A package is a convenient way of grouping together many
different classes that have a common purpose. For example, the java.lang
package contains the classes that are most central to the Java language. In learn-
ing Java we will concentrate on a minimum number of these packages in order
to focus your understanding on the essentials of package and class design and
use. Once you have mastered the use of packages and classes, you can apply
these principles to all the packages within the language.

To review:

■ The Java API is composed of many packages.

■ A package consists of a set of related classes.

■ Classes act as templates for objects. They define both data and operations
(methods).

■ Specific objects are instantiated from a class.

■ Objects and primitive data values are the two kinds of information manipu-
lated by Java programs.

Now, we will further explore the concepts of classes and objects using strings
as an example.

2.2 The String Class

A string is a group of characters that are stored as consecutive items in the memory
of a computer, with each character being represented by a 16-bit Unicode.

54 Chapter 2 Objects

SYNTAX

Method Signature: modifier(s) return-type
method-name(formal-parameter-list);

A string literal in Java is delimited by double quotes. For example the string
literal ABC is written as “ABC”, or by using the Unicodes as
“\u0041\u0042\u0043”.

In Chapter 1 you were introduced to the basic data types used for storing
primitive data such as numbers and single characters; however, no type was
explicitly mentioned for a string. The reason for postponing the introduction of
strings is because in Java they are not represented as primitive data, but as
objects.

Declaring Objects
How can we declare a string object? By using the name of the class String in
the same way as you would use the names of any of the primitive types. A class
may be thought of as a data type.

For example, you can declare a String object called alphabet as follows:

String alphabet;

The declaration on its own is not much use, since the memory location alpha-
bet does not refer to any data. It simply reserves a location in memory for a ref-
erence to the object. Java recognizes this fact, and has designated the contents of
this location as null (other null designations are shown in Figure 2.3).

So, the next question is how to assign a value to the string object and how to
perform operations on the object. The answer lies in understanding the methods
of the object’s class.

Methods and Parameters
Recall that a class may define both data and segments of program code, known
as methods, to operate upon the data contained in the class. A method’s signa-
ture is the first line of a method, terminated by a semicolon. The purpose of a
signature is to uniquely identify a method in terms of its name and formal
parameter list. The syntax of a signature is:

which is interpreted as follows:

modifier(s)—usually indicates the visibility of the method, i.e., where it can
be activated from. If you inspect the partial listing of the String class in
Figure 2.1, you will notice that the modifier defined for those methods is
public; this implies that the methods are visible (accessible) anywhere the
class is visible.

2.2 The String Class 55

return-type—the return type specifies the data type of the value that is
returned by the method. This can be a primitive data type or a class. If no
data is returned by the method, then the keyword void is used for the
return type. For example, the length() method of the String class returns
the length of the string as an int. You will see an example of the use of this
method in the sample program at the end of this section.

method-name—an identifier that defines the name of the method.
formal-parameter-list—declares the data variables that are passed to and

used by the method. If no data is passed to the method, then the parenthe-
ses remain empty. A method will typically perform some action on its
object, or return some information about its object. Parameters can be used
to modify the action or affect the information that is returned. For example,
the string method replace(char oldChar, char newChar) includes
two parameters, oldChar and newChar. As you can probably guess, these
parameters affect the action of the method—they determine what kind of
replacement will take place.

Method signatures are used in the documentation of a class. Consider the fol-
lowing partial listing taken from the String class.

public final class String ...
{

// constructors
public String();
public String(String value);
.
.

// instance methods
public String concat(String str);
public int length();
public String replace(char oldChar, char newChar);
public String toUpperCase();
.
.

}

From the partial listing of the class String, it is evident that a class contains at
least two different categories of methods. (There is a third category, but this will
be dealt with in the next chapter.) For now we need to consider the differences
between two concepts:

■ a constructor

■ an instance method

56 Chapter 2 Objects

SYNTAX

Instantiation:

object-name = new class-constructor();
object-name = new class-constructor(argument-list);

where argument-list consists of one or more values used by the con-
structor to initialize the data of the object.

Constructors
You may wonder about the methods that have the same name as the class. These
are special methods known as constructors, and their purpose is to initialize data
of the type String to specified values. A constructor does not return a value.

Recall that we declared a String object called alphabet as follows:

String alphabet;

Once it is declared, we can initialize alphabet by using either of the construc-
tors. This initialization is known as creating an instance of the class or creating
an object.

The syntax of the instantiation of a class or the creation of an object follows.

Examples of creating the object alphabet follow.

alphabet = new String();

The above uses the first String constructor with no arguments.

alphabet = new String("abcdefghijklmnopqrstuvwxyz");

The above uses the second String constructor that accepts a string as an argu-
ment.

The first of these two statements will initialize alphabet to the empty
string "" and the second statement will initialize alphabet to the string
"abcdefghijklmnopqrstuvwxyz".

Since the declaration and initialization of objects are so frequently per-
formed one right after the other, the Java language provides a way to do both
together in a single statement. The following will both declare and instantiate
the String object alphabet:

String alphabet = new String("abcdefghijklmnopqrstuvwxyz");

In any of these situations we might ask, What is the purpose of the reserved
word new? Let us recall for a moment how primitive data types are stored.

2.2 The String Class 57

Contents Identifier

1999 year

A letter

0.175 tax

int year = 1999;

char letter = ‘A’;

float tax = 0.175f;

null

String alphabet;

alphabet

alphabet = new String ("abcdefghijklmnopqrstuvwxyz");

alphabet

abcdefghijklmnopqrstuvwxyz

Figure 2.3 An object is stored by reference

Figure 2.2 illustrates how three primitive types int, char, and float can be
conceptually represented in the memory of the computer.

In Figure 2.2, the values of the identifiers year, letter, and tax are stored
at the memory locations depicted by the names of the identifiers. Hence, the
primitive data is stored by value.

Figure 2.3 illustrates that when an identifier of the type String is initial-
ized, the value of the string is not stored at the memory location depicted by the
identifier, but it is stored in a different location pointed at or referenced by the
identifier. The object alphabet is stored by reference.

The purpose of the reserved word new is to allocate a new memory storage
area for holding the value of the string. Notice in Figure 2.3 that the memory

Figure 2.2 Primitive types stored by value

58 Chapter 2 Objects

location alphabet contains a reference to the memory area that stores the
string.

String Assignment
If you wish to assign one string to another, then the assignment does not pro-
vide a copy of the value but merely a copy of the reference to the value. For exam-
ple, Figure 2.4 illustrates that although the string alphabet is assigned to the
string lowerCase by the assignment statement lowercase = alphabet,
lowerCase only references the same object as alphabet and does not obtain a
new copy of the string "abcdefghijklmnopqrstuvwxyz".

Instance Methods
From the partial listing of the class String you can see a group of methods that
appear to describe the characteristics and operations you might associate with
an object such as a string of characters. For example, the identifier length sug-
gests that it returns the characteristic of the number of characters in a string; the
identifier concat suggests the operation of concatenation or appending of one

Since the String data type is so commonly used, Java provides a shortcut method for ini-
tializing a string. The reserved word new may be omitted and an object alphabet of type

String can be declared as follows.

String alphabet = "abcdefghijklmnopqrstuvwxyz";

1i

null

String lowerCase;

lowerCase

lowerCase

String alphabet = "abcdefghijklmnopqrstuvwxyz";

alphabet

abcdefghijklmnopqrstuvwxyz

lowerCase = alphabet;

Figure 2.4 Assignment of strings

2.2 The String Class 59

SYNTAX

Passing a Message to an Object by an Instance Method:

object.method-name();
object.method-name(argument-list);

string after another; the identifier replace suggests the operation of replacing
every occurrence of one character with another; and the identifier toUpperCase
suggests the operation of converting the characters in the string to the uppercase
letters if appropriate.

Conceptually, an object is a thing you interact with. You send it various mes-
sages and it will react. There are two kinds of messages:

■ a command message

■ a query message

From the partial listing of the String class, examples of command messages are
concat, replace, and toUpperCase; an example of a query message is
length. These messages are implemented as instance methods.

Messages in Java are passed by using the name of the object to receive the
message, followed by the message itself. A period is used to separate the object
name and the message as depicted by the following syntax.

The statement alphabet.length() will return the length of the alphabet
string as 26.

The statement alphabet.toUpperCase() will change every character of
the alphabet string to uppercase letters:

"ABCDEFGHIJKLMNOPQRSTUVWXYZ".

In Java, a string is immutable or constant; that is to say, once a string has been
defined, its contents cannot be changed. To conform with this requirement, for
String methods such as toUpperCase, Java makes a copy of the original string
and changes the contents of the copy to reflect the operation. Consider the fol-
lowing statements:

String oldString = "Have a nice day!";
String newString = oldString.replace('a','-');

The second statement replaces every occurrence of the character 'a' in the old
string with the character '-'. As a result, the variable newString will contain
the following characters:

"H-ve - nice d-y!"

60 Chapter 2 Objects

Once an object of a particular class has been declared, you are allowed to perform mes-
sage passing upon objects of that class, only using the instance methods defined by the

class.

Given the following declarations:

String first = "Java is ";
String second = "a useful programming language.";
String sentence;

then the statement sentence = first.concat(second) will assign the fol-
lowing string to the variable sentence:

"Java is a useful programming language".

The following program is intended to reinforce the technique of creating a
string object, using some of the instance methods to manipulate and gain infor-
mation about the string. You are expected to understand those statements that
are in color in the program.

// program to demonstrate the String class and some of its instance methods

import avi.*;

class Example_1
{

public static void main(String[] args)
{

String oldString = "Have a nice day!";
String newString = oldString.replace('a','-');
String capitalString = oldString.toUpperCase();
int lengthOfString = oldString.length();

Window screen = new Window("Example_1.java","bold","blue",36);
screen.showWindow();

screen.write("\n\tOld string: " + oldString + "\n");
screen.write("\n\tNew string: " + newString + "\n");
screen.write("\n\tOld string in upper case: " + capitalString +

"\n");
screen.write("\n\tLength of old string: " + lengthOfString +

" characters\n");
}

}

!

2.3 The Anatomy of a Simple Program Revisited 61

The following is the resulting screenshot.

2.3 The Anatomy of a Simple Program Revisited

A template for constructing a Java program was already given to you in Chapter
1 so that you had a framework for inserting statements into the program. We
are now ready to discuss the general structure of a Java program. This should

Modify the program Example_1 as follows.

(1) Declare and initialize two strings containing your first name and your family
name (surname).

(2) Write a statement to concatenate both strings, leaving a space between the
names. Hint—concatenate the first name with a space, and then concatenate
the result with the family name.

(3) Write the concatenated names to the screen.

(4) Capitalize the names and write them to the screen.

(5) Write the number of characters in the concatenated names to the screen.

(6) Save, compile, and run your new program.

NOW DO THIS

62 Chapter 2 Objects

heading giving details of the name and purpose of the program

import list

class name
{

main method
{

declarations of constants
declarations of variables
program statements

}
}

help you to understand many of the program constructs that you have seen in
the previous example programs, but that have not yet been addressed.

The same template for constructing a Java application program is illustrated
below. I say application program because Java code can be written as either an
application or an applet. However, don’t concern yourself at the moment with
applets; these are dealt with in detail much later in the book. For the moment,
you need to concentrate on application programming.

In the explanation that follows, the key parts of the template illustrated in
the following figure are used as suitable section subheadings.

Heading Giving Details of the Name and Purpose of the Program
This is simply a set of comments written on as many lines as necessary.
Comments are used to provide information to someone who is reading the pro-
gram code. They are ignored by the computer and do not affect the execution of
the program. In Java, a comment begins with a double slash // at the start of
every line. The heading comments normally document the name and purpose of
the program. They may also include the name of the author of the program and
the date it was written, plus other facts you care to document.

You are not limited to using comments at the beginning of a class.
Comments should be used throughout your program to clearly describe the pur-
pose of either a single statement or groups of executable program statements.

Import List
The import statement makes Java classes available to the program. You can
specify each class in the import statement, for example avi.DialogBox and
avi.Window, but it is a lot simpler to use an asterisk as a wildcard to make all
the classes of the package avi available; hence the statement avi.* that is used
in many of the programs in this book.

2.4 The AVI Package 63

The java.lang package is automatically imported; therefore, there is never any need to
include it in the import list.

1i

When creating a name for a class, be careful about the rules for naming identifiers in Java
and the naming of program files for the operating system being used. The Java convention

also dictates that the name of a class should always begin with an uppercase letter.

A wildcard is a character that can represent a number of different characters.
The wildcard * may represent any of the class names.

Class Name
The name of the class containing the main method must be the same as the
name given to the program file (omitting the .java suffix). The naming of the
class must follow the same rules as for the naming of any other identifier. The
use of braces { } indicate the beginning and ending of the class.

Main Method
In the construction of a Java application program there must be one main
method present in one of the classes. The computer will start the execution of
the program at the first statement in the main method and terminate execution
after the last statement. The main method is a class method with the following
signature:

public static void main(String[] args);

The static modifier implies that the main method is not an instance method
requiring an object for its invocation—but more of this in the next chapter. The
keyword void implies that the main method does not return a value. The for-
mal parameter list will allow arguments to be passed to the main method at the
time of giving the command to execute the program—but more of this later in
this chapter.

Notice that the beginning and ending of the main method are denoted by
the use of an open { and a closed } brace respectively. Notice also from the tem-
plate how the declaration of the variables is kept separate from the program
statements.

2.4 The AVI Package

The Java language was not designed for beginners to programming, and, as a
consequence, the level of programming associated with the input and output of
data to the computer is not trivial. To understand the program statements that

!

64 Chapter 2 Objects

+ Audio

avi

+ CheckBoxes

+ DialogBox

+ FilmStrip

+ Memo

+ RadioButtons

+ Slider

+ Timer

+ Window

Figure 2.5 UML representation of the avi package

The Unified Modeling Language (UML) is a general-purpose visual modeling language that is
used to specify, visualize, construct, and document the artifacts of a software system. The

notation will be gradually introduced in context, from a programming perspective, as you
progress through the book.

1i

permit input and output requires an understanding of object-oriented concepts
that are not covered until at least halfway through this book.

To enable you to use and understand a modern approach to input and out-
put, we have written a package called avi (an acronym for audio-visual inter-
face). This package was written in Java 2, and you should have already installed
it according to the instructions given in the Introduction.

By the time you have read through this book, you will be able to understand
how the avi package was written, and you will have enough knowledge of the
Java language to write your own package for input and output.

Figure 2.5 indicates the names of the classes within the avi package that are
available for public use. This figure uses the Universal Modeling Language
(UML) notation for describing a package. The package name is contained
within a tab drawn on the top left-hand side of a larger rectangle, thus repre-
senting a folder icon. Each class is labeled within an inner rectangle. The + sign
in front of the name of a class indicates that the class has been written for public
use.

In the following two sections you will become familiar with the use of the
Window and DialogBox classes. The remainder of the avi classes will be
explained in their correct context as you progress through the book.

2.5 The Window Class 65

2.5 The Window Class

The Window class is used for output and is analogous to a pane of glass in a win-
dow frame. You can write on the glass or fix objects, such as posters, to the glass.
By creating a Window object, you are creating a container for both a writing area
and for displaying other graphical objects. The class Window contains the fol-
lowing methods:

public class Window
{

// first constructor
public Window(String filename);

// second constructor
public Window(String filename,

String style,
String color,
int fontSize);

public void showWindow();
public void clearTextArea();
public void closeWindowAndExit();
public int getWidth();
public int getHeight();
public void write(String datum);
public void write(char datum);
public void write(int datum);
public void write(long datum);
public void write(float datum);
public void write(double datum);

}

To create a Window container object, you must first use one of the class con-
structors. The first constructor requires just one argument that can be a literal
constant or a variable:

filename—is normally the name of the main application file associated with
the program. This parameter is for documentation purposes only.

The constructor automatically uses by default a monospaced, Courier font, with
a plain style, and font size 16 for text output. The color of the text on the screen
is dark gray. Use this constructor if you need a font similar to that produced by a
typewriter. To create a window object that represents the screen of the monitor,
you would code the constructor as follows:

66 Chapter 2 Objects

Window screen = new Window("Example.java");

However, if you need to change either the style or size of the font, or change the
color of the text, then use the second constructor. The second constructor
requires four parameters. The arguments you supply can be either literal con-
stants or variables.

filename—is normally the name of the main application file associated with
the program. This parameter is for documentation purposes only.

style—is either "PLAIN", "BOLD", "ITALIC" or "BOLD+ITALIC". You may
use either uppercase or lowercase characters. An empty string "" will default
to a BOLD+ITALIC style.

color—is either "red", "blue", or "black". You may use either uppercase or
lowercase characters. An empty string "" will default to the color black.

fontSize—is a positive integer that represents the point size of the output
text. Values less than 10 default to a point size of 10. A font size of 72
points will produce uppercase characters approximately 1 inch in height.

The second constructor uses the Java Dialog font by default. To create a
Window object that represents the screen of the monitor and permits textual out-
put on the screen to appear in a bold typeface with a point size of 72 and with
the text in red, you would code the constructor as follows:

Window screen = new Window("Example.java","bold","red",72);

Having created a Window object screen, you must issue a message to show the
object:

screen.showWindow();

An illustration of a Window object is shown in Figure 2.6. Notice that the screen
is split into two text areas. The upper text area is the larger of the two and is
used for textual output. The second-lower text area is used by the avi system to
echo and display all input data.

You may output to the screen any of the primitive data types or the String
type described in this chapter by using the write method. For example,

screen.write("Hello World");

will display the text Hello World on the screen and leave the cursor on the
same line.

The strings that you output can have special characters embedded into
them. These are known as escape sequence characters, the most common being
\t for tabulation and \n for a new line. Turn to Appendix A, Table A.4 for the
full list of escape sequence characters.

2.5 The Window Class 67

Figure 2.6 Format of a Window object

To display the "Hello World" string and place the cursor on the next line,
you would embed the escape sequence for the new-line character into the out-
put string as follows:

screen.write("Hello World\n");

If you examine the class Window you will see that there is a write method for
every data type discussed in this chapter. The methods, where necessary, convert
the various Java primitive types to string representations, then output the result-
ing string. This means that the write method can not only be used to display
primitive data types, but it also can be used for combinations of primitive data
types and strings. For example, the following segment of Java code can be used
to output text and the value of an initialized variable.

float grossWage = 250.0f;

screen.write("Gross weekly wage = $" + grossWage);

Java allows a plus sign + to be used as a string concatenation operator. The Java
primitive type float will automatically be converted to a string representation

68 Chapter 2 Objects

There is no limit to the number of strings that can be concatenated to form the argument of
the instance method write.

1i

before being concatenated to the string defined between the quote marks.
Therefore, "Gross weekly wage = $" is appended with the string value of
grossWage before the entire string is displayed on the screen.

The text areas of the window contain scroll bars on the right-hand side of
the window. As the upper text area fills up with text, it automatically scrolls ver-
tically upwards and a scroll bar appears. Whenever you input data into the pro-
gram via an object such as a dialog box, the input is automatically echoed and
displayed to the lower text area. As this lower text area fills up with text, it also
automatically scrolls vertically upwards and a scroll bar appears. When your
program finishes, you can use the scroll bars to inspect all the text output to the
upper text area and match it to all the echoed input displayed in the lower text
area.

The instance method clearTextArea() will allow you to clear the entire
text area of all the text in the upper window. The scroll bar disappears and you
can start writing more text from the top left-hand corner of the text area.

The instance methods getWidth() and getHeight() allow you to inspect
the width and height of the window.

Finally, the instance method closeWindowAndExit() does as the name
suggests; it will close the window object and cause the computer to exit back to
your operating system prompt. Do not use the closeWindowAndExit()
method if you want to spend time inspecting the echoed input and output from
your program in the respective text areas. In such circumstances, it is better to
use the close window icon X in the top right-hand corner of the window only
when you want to return to the operating system.

The use of the window class is illustrated by the next program. You have
already seen this program in the Introduction. It displays the message HELLO
WORLD across the screen in red.

// program to write the text literal "HELLO WORLD" centrally
// on the screen

import avi.*;

class Example_2
{

public static void main(String[] args)
{

2.6 Input to a Dialog Box 69

Compile and re-run program Example_2 after each of the fol-
lowing modifications.

(1) Delete the line screen.showWindow(); and note the outcome.

(2) Experiment by changing the style of text, color of text, and font size.

NOW DO THIS

// create a window object screen
Window screen = new Window(

"Example_2.java","bold","red",72);

screen.showWindow();
screen.write("\n\n\n HELLO WORLD");

}
}

2.6 Input to a Dialog Box

The DialogBox class is used for the input of any string value via the keyboard.
The constructor creates a DialogBox object that appears on the Window object.
The dialog box is modal, implying that no other interaction either with the win-
dow pane or with other objects on the pane is possible until data has been input
at the dialog box and the box has been closed. Figure 2.7 illustrates a dialog box.

The class DialogBox contains the following methods:

public class DialogBox
{

public DialogBox(Window parent,
String prompt);

public void showDialogBox();
public String getString();
public char getChar();
public int getInteger();
public long getLongInteger();
public float getFloat();
public double getDouble();

}

To create a DialogBox object you must use the class constructor. Notice that
the constructor requires two data items in the formal parameter list:

70 Chapter 2 Objects

parent—a Window type that specifies the container onto which to place the
dialog box.

prompt—a string, used as a cue to prompt for input. For example, in Figure 2.7
the prompt is "What is your name?".

Assuming that you have already created a screen Window object, create a dialog
box named input like the one depicted in Figure 2.7 by coding the constructor
as follows:

DialogBox input = new DialogBox(screen, "What is your name?");

However, having created the dialog box object, remember to display it on
the screen using the showDialogBox() instance method, as in
input.showDialogBox();.

To retrieve the name Mickey Mouse, input by the user at the dialog box, it is
necessary to use the appropriate instance method, in this example,
getString(). Notice that the method returns a string; therefore, retrieval of
the input data is possible by using either of the following statements:

String name;
name = input.getString();

or by shortening this to:

String name = input.getString();

Note that both coding techniques have used the shorthand form of String
instantiation.

If you forget to show a dialog box and use any of the methods to get the
appropriate datum, the avi system will issue an error message and abandon the
execution of your program.

After inputting the data, the user must close the dialog box by either press-
ing the Return key (the most natural operation after typing the string) or by
using the mouse to press the close box button X in the top right-hand corner of
the dialog box. Despite the dialog box being closed, it is only hidden from view
and not destroyed. To make the dialog box visible again, the programmer can

Figure 2.7 An example of a dialog box

2.6 Input to a Dialog Box 71

Modify the previous program to:

(1) Input your name and address into two different dialog boxes.

(2) Change all the alphabetic characters of the name to uppercase letters.

(3) Change all the alphabetic characters of the address to lowercase letters.

(4) Display the modified name and address to the screen.

NOW DO THIS

use the instance method showDialogBox() and it will return to the screen with
the text field for inputting the blank, ready for new input.

You have already seen the following program in the Introduction. The same
program is presented to you now so that you may understand the input state-
ments that are in color.

// program to input your name and display a welcome message on
// the screen

import avi.*;

class Example_3
{

public static void main(String[] args)
{

// declare name as a string
String name;

// create a window object screen
Window screen = new
Window("Example_3.java","bold","blue",48);
screen.showWindow();

// create a dialog box object for user input
DialogBox inputName = new
DialogBox(screen,"What is your name?");
inputName.showDialogBox();

// get the name from the dialog box
name = inputName.getString();

// display a welcome message on the screen
screen.write("\n\n\n Hello "+name+"!");
screen.write("\n\n Welcome to");
screen.write("\n Object-oriented Programming with Java.");

}
}

72 Chapter 2 Objects

Figure 2.8 Input of a number into a dialog box

Figure 2.9 An error message issued when data is not in the correct format

2.7 Converting Strings to Numbers

Figure 2.8 indicates that numerical data has been input into the dialog box.
If the dialog box was coded using:

DialogBox input = new DialogBox(screen,"Integer?");
input.showDialogBox();

then the number is retrieved from the dialog box using the appropriate instance
method. In this example, an integer value has been input; therefore, the method
getInteger() will be used as follows.

int number = input.getInteger();

If the number had been any of the other primitive types described in this chap-
ter, then the appropriate instance method would be used from the DialogBox
class. For example, if a single-precision real was input, then use getFloat();
if the number was a long integer, then use the instance method get-
LongInteger(), and so on.

You may wonder what would happen if you input a noninteger string and
attempted to convert it to an integer type through one of the instance methods.
For example, if you attempted to convert the real 1.234 to an integer, then you
would get the error message shown in Figure 2.9 displayed on the screen.

2.7 Converting Strings to Numbers 73

Similarly, if you input any number in an incorrect format for the type of data
required, the DialogBox class will automatically issue a warning message and
set your data to the specified default value of the minimum value for its data
type.

The programs you were asked to write as answers to questions 38, 39, and 40
at the end of Chapter 1 all suffered from one severe drawback—the data you
used was written into the program. This is known as hard-coding data, and does
not allow the program to respond to a range of data values that you might want
to use when running the program.

The next program demonstrates how a dialog box may be used to input two
integers and display their sum, difference, product, quotient, and remainder
after division. Read through the program and see if you can understand all of
the code with the aid of the descriptions and examples you have read so far. The
code in color indicates how the strings input to the dialog box have been con-
verted into integers.

// program to input two integer operands and perform the
// arithmetic operations of +, - *, /, and % upon them

import avi.*;

class Example_4
{

public static void main(String[] args)
{

// declare two variables of type integer
int first, second;

// create a window object screen
Window screen = new Window("Example_4.java","bold","blue",24);
screen.showWindow();

// display a heading on the screen
screen.write("Simple Mathematics\n\n");

// create a dialog box object to input numbers
DialogBox inputNumber = new DialogBox(screen,"Integer?");

// show dialog box twice to input two integers
inputNumber.showDialogBox();
first = inputNumber.getInteger();
inputNumber.showDialogBox();
second = inputNumber.getInteger();

74 Chapter 2 Objects

// display the results of calculations
screen.write(first+" + "+second+" = "+(first+second)+"\n");
screen.write(first+" - "+second+" = "+(first-second)+"\n");
screen.write(first+" * "+second+" = "+(first*second)+"\n");
screen.write(first+" / "+second+" = "+(first/second)+"\n");
screen.write(first+" % "+second+" = "+(first%second)+"\n");

}
}

Note: Arithmetic statements may be specified within the parameter of
the instance method, however, you must parenthesize each numeric ex-
pression.

After compilation, the execution of the program results in the following
screen shot, assuming the user has responded to the two Dialog Box queries
with 56 and 9.

Whenever you use the audio-visual interface, a text file is automatically cre-
ated to record all the echoed input and output as your program executes. This
log file is very useful if you need a paper copy of your results. The name of the
file is LOG_FILE.TXT, and may be opened by any text processing program to
enable you to print the textual output from your program. Figure 2.10 illustrates
the contents from the log file that was generated when program Example_4 was
executed.

2.8 Command Line Arguments 75

2.8 Command Line Arguments

The command line provides another means of inputting string data to a pro-
gram at the point at which you issue the command to run the program. For

Figure 2.10 An example of a log file

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_4.java date: 6/25/2000 time: 5:7:44

===

Simple Mathematics

At the prompt: Integer?, you input [56] at the dialog box.

At the prompt: Integer?, you input [9] at the dialog box.

56 + 9 = 65
56 - 9 = 47
56 * 9 = 504
56 / 9 = 6
56 % 9 = 2

Modify program Example_4 as follows.

(1) Declare four variables first, second, third, and mean as float. Declare a
fifth variable, count, as int, and initialize count to zero.

(2) Use dialog box objects to input real numbers for the variables first, second,
and third, respectively. After each input, increase the variable count by 1.

(3) Calculate the arithmetic mean of the three values first, second, and third.

(4) Modify screen.write statements to output the values of the variables first,
second, third, and mean.

(5) Compile the program.

(6) Run the program several times; on each occasion use different values for the
variables.

NOW DO THIS

76 Chapter 2 Objects

italic

blue
args

0

1

Figure 2.11 An illustration of the main method formal parameter args

example, in the Introduction you were instructed to use the following command
to run the HELLO WORLD program:

java Example_1

This program can be rewritten to allow command-line input. For example, it
could be written to allow the user to change the style and the color of the text
being used to output the message HELLO WORLD. In that case, two parameters
could be appended to the command line as follows:

java Example_1 italic blue

The two string arguments "italic" and "blue" are passed as parameters to
the main method. You may recall that this parameter is defined as String[]
args. Clearly, this is a modification to the syntax for defining a variable of type
string; the String type now has brackets [] appended to it. What does all this
mean?

The square bracket notation is reserved to indicate that the data is stored,
not at a single memory location—for this would be impossible for two items of
data—but at continuous memory locations in a configuration that conceptually
may be thought of as a set of pigeon holes numbered from 0 to 1. Figure 2.11
illustrates this concept.

The set of pigeon holes is known as a one-dimensional array. An array is a
special kind of object. It has no class and it is not defined as part of the Java API
documentation. The object is an inherent data structure in the Java language.

Since the array args is an object, it uses a reference to point to the pigeon
holes. (Remember all objects are stored by reference and not by value.)

However, the data to be stored are a set of strings, which themselves are
objects. Since the strings are objects, they cannot be directly stored in the pigeon
holes; instead, references from each of the pigeon holes point to the respective
string objects.

2.8 Command Line Arguments 77

An array is a named collection of one or more items of data of the same
type. Each element of data can be accessed by the name of the array and the
numbered index indicating its position within the array. Within the main
method the arguments that are passed are stored as strings in the array args.
The first parameter is stored at args[0], the second at args[1], and so on. In
other words, args[0] has the value "italic", and args[1] has the value
"blue".

The size of the array args is clearly dependent upon the number of parame-
ters being passed to the main method. The size of any array is always returned
by the instance variable length. Therefore, the size of the args array is
args.length.

Program Example_1, from the Introduction, can be rewritten and renamed
as Example_5 to take into account the command-line parameters as follows.

// program to use command line parameters to specify the style and color
// of the text on the window at run time, and write the text literal
// "HELLO WORLD" centrally on the screen

import avi.*;

class Example_5
{

public static void main(String[] args)
{

// create a Window object screen
Window screen = new
Window("Example_5.java",args[0],args[1],72);

screen.showWindow();
screen.write("\n\n\n HELLO WORLD");

}
}

The program is executed using the command line:

java Example_5 italic blue

78 Chapter 2 Objects

You may wonder how to pass a numerical value to the main method in order to
control the size of the font. This must be passed as a string and then converted
into a number. The conversion of a string to a numerical value will be consid-
ered in Chapter 4, in the section on wrapper classes. However, for now you will
not need to use this feature.

2.9 Errors

Syntax Errors
There are many traps for the unwary programmer to avoid when writing a com-
puter program. The first of these concerns the misuse of the syntax (grammar)
of the language. It is very easy, even for the experienced programmer, to type a
lowercase letter when an uppercase letter was required, omit a semicolon at the
end of a statement, incorrectly type the wrong number of arguments in a con-
structor or method, and so on. The list of grammatical errors that you can make
is endless. The compiler will detect the misuse of the syntax and list the source
of the errors for you, as the next program demonstrates.

The following program is written to find the total cost and average price of
three newspapers. The names of the newspapers are input at the command line,
and each name is used as part of the prompt in a dialog box to input the price of
that paper. Notice that it is necessary to instantiate three dialog boxes, since
each dialog box has a different prompt.

2.9 Errors 79

Can you find the errors from the listing of the program? Line numbers have
been deliberately inserted into the listing of the program to make reference to
the syntax errors easier.

1: // program to input the names of three newspapers at the
2: // command line, and input the prices of the newspapers
3: // via dialog boxes, calculate and output the total cost
4: // and average price of the newspapers
5:
6: import avi.*;
7:
8: class Example_6
9: {
10: public static void main(String[] args)
11: {
12: // declare prices of newspapers
13: int pricePaper1, pricePaper2, pricePaper3;
14:
15: // declare total cost and average price of papers
16: int totalCost, averagePrice;
17:
18: // declare a dialog box for each paper
19: DialogBox inputPricePaper1, inputPricePaper2,
20: inputPricePaper3;
21:
22: // create a window object screen
23: Window screen = new
24: Window("Example_6.java","blue");
25: screen.showWindow();
26:
27: // input prices of papers
28: inputPricePaper1 = new DialogBox(screen,"Price of "+
29: args[0]+"?");
30: inputPricePaper1.showDialogBox();
31: pricePaper1 = inputPricePaper1.getInteger()
32:
33: inputPricePaper2 = new DialogBox(screen,"Price of "+
34: args[1]+"?");
35: inputPricePaper2.showDialogBox();
36: pricePaper2 = inputPricePaper2.getInteger();
37:
38: inputPricePaper3 = new DialogBox(screen,"Price of "+
39: args[2]+"?");
40: inputPricePaper3.showDialogBox();
41: pricePaper3 = inputPricePaper3.getInteger();
42:

80 Chapter 2 Objects

43: // calculate total cost and average price
44: totalcost = pricePaper1 + pricePaper2 + pricePaper3;
45: averagePrice = totalCost / args.length;
46:
47: // display statistics about newspapers
48: screen.write("Statistics about newspapers\n\n");
49: screen.write("Total cost of "+args.length+" papers is "+
50: totalCost+" cents\n");
51: screen.write("Average price of papers is "+averagePrice+
52: " cents\n");
53: }
54: }

When the program was compiled, the compiler listed the following errors.

On lines 23 and 24, the constructor for the Window requires four arguments.
The missing arguments are the style and font size. The statement should be
written as:

Window screen = new
Window("Example_6.java","plain","blue",36);

Line 31 is a confusing error message since it does not specify the cause of the
error. Because the semicolon has been omitted at the end of the line, the com-
piler assumes that the expression continues onto lines 32 and 33. Hence, line 33
is flagged as containing an error when the error is only on line 31. The state-
ment in line 31 should be written as:

pricePaper1 = inputPricePaper1.getInteger();

2.9 Errors 81

(1) Correct and recompile program Example_6.

(2) If you have no more syntax errors, then run the program on a computer using
the command line:

java Example_6 Courier Mercury Globe

NOW DO THIS

The error message relating to line 44 is informative. However, you can be for-
given for thinking that the variable totalcost has already been defined in line
16. But look again, and remember that Java is a case-sensitive language. The
declaration in line 16 defines the variable as totalCost (with an uppercase let-
ter C), yet the identifier in line 44 contains a lowercase c.

This error also had a knock-on effect, i.e., the compiler found errors that did not
exist in the remainder of the line, and because the identifier was not correctly coded,
the identifier totalCost in line 45 has also been flagged as not being initialized. To
eliminate these errors, the statement in line 44 should be written as:

totalCost = pricePaper1 + pricePaper2 + pricePaper3;

In the final analysis, three real syntax errors were reported as six errors by the
compiler!

The following screen shot illustrates the result from running the corrected
program.

82 Chapter 2 Objects

Run-Time Errors
The second category of error you may encounter occurs when the program com-
piles correctly, yet fails during program execution. There are numerous reasons
why this can happen; however, we will consider just one case here. Consider
what would happen if you did not input the three command-line parameters
when attempting to run the previous example on a computer, and input:

java Example_6

The interpreter would generate the following error message.

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 0
at Example_6.main(Example_6.java:27)

If you run this program in the manner described, you will notice that despite the
window being opened, no dialog box appeared for you to input any data. There
were no values supplied as command-line parameters. Consequently the length
of the args array was 0 since it contained no values. Therefore, the reference to
args[0] in the program generated the run-time error.

Logical Errors
The third category of error you are likely to encounter is when the program
compiles correctly, yet does not perform in the manner expected. This could
happen, for example, if you coded a minus sign somewhere you meant to code a
plus sign. Your program would compile and run to completion but would proba-
bly give incorrect output. These are logical errors that may be avoided by care-
fully checking the logical solution behind your programmed solution. Such
errors can normally be weeded out during the testing stage of programming;
however, despite many of our best efforts, some errors may still creep through
into the final code.

S U M M A R Y

■ A package is a convenient structure for grouping together classes that repre-
sent some common purpose.

■ A class containing a constructor and instance methods may be used as a
data type.

■ An instance method is invoked by an object of the same class.

Review Questions 83

■ The instance methods of a class are used to perform a variety of operations
that pertain to the object.

■ A variable declared as a class type does not become an object until a con-
structor within the class has been executed.

■ The assignment of one object to another of the same type does not create a
copy of the object.

■ A data type String is a class and not a primitive data type.

■ The only operator a String type may use is + for concatenation.

■ To reuse any method it is necessary to import the appropriate class. A class
can be imported by specifically stating the name of the package and class in
an import statement. Alternatively, to make all the classes of a package
available in a program, use only the package name followed by the wildcard
symbol *.

■ A program may contain just one class that contains the main method.

■ Data may be input to the main method at run-time through the use of
command-line arguments.

■ The formal parameter list of the main method is a String array. Each string
argument is stored in consecutive locations of this array.

■ A program should contain many comments explaining the purpose of not only
the program but groups of statements contained therein.

■ A program may contain syntax errors when the grammar of the Java language
is not used correctly, logical errors when the functionality of the program has
not been correctly tested, and run-time errors when the program fails owing
to unpredictable circumstances.

Review Questions
True or False

1. An object is created by executing a class constructor.

2. Assigning one string object to another string will result in a copy of the string object
being made.

3. You may invoke an instance method in the same way as you call a class method.

4. The arguments passed to a main method from a command line are stored as strings in a
one-dimensional array.

5. You interpret a program before you compile it.

84 Chapter 2 Objects

 World Forecasts
City Today

Acapulco 90/97 s
Athens 79/59 pc
Bangkok 90/78 pc
Beijing 62/38 pc
Berlin 63/51 r
Bermuda 81/74 pc
Budapest 72/52 pc
Buenos Aires 83/62 pc
Cairo 89/68 pc
Dublin 53/39 c
Frankfurt 63/56 sh
Hong Kong 84/74 s

Figure 2.12 World forecasts

6. A byte-code file may be used on a different computer from the one that produced the
file.

Short Answer

7. Write the signature of any String constructor listed in this chapter.

8. What is the meaning of args.length, where args is the formal parameter of the
main method?

9. Why is the main method declared as void?

10. What does a Java compiler do?

11. Why are Java programs portable?

12. Distinguish between syntax and logical errors.

13. What is the purpose of a package?

Exercises
14. From the illustration in Figure 2.12 discuss what you consider to be data and classify the

data by type as variables declared in Java.

In Figure 2.12 the numbers refer to high and low temperatures in degrees Fahrenheit,
and the abbreviations describe the following weather conditions: s- sunny, pc - partial
cloud, r- rain, sh- showers and c - cloud.

15. What are the errors in the following statements?

a. Window = new Window("Question 15a");

b. Window screen = new Window("Question 15b","plain");

Programming Problems 85

c. Window screen = new Window("red","BOLD",18);

d. DialogBox input = new DialogBox("screen","temperature?");

e. DialogBox input = new DialogBox("");

f. DialogBox input = new DialogBox(screen);

16. How would you expect the following output statements to display information?

a. screen.write("Hello World");

b. screen.write("\tname: ");

c. screen.write("\tname: " + name); where name is declared as
String name = "Mickey Mouse";

d. screen.write("a=" + a + " b=" + b + " c=" + c+"\n"); where
a=3, b=4, and c=5.

e. screen.write("area covered " + area); where area = 635.8658.

f. screen.write("\u0041\u0042\u0043");

17. If a DialogBox object was created as inputData, state the errors in the following
statements.

a. String datum = inputData.getString;

b. int datum = inputData.getFloat();

c. String datum = inputData.getChar();

d. Double datum = inputData.getDouble();

e. float datum = inputData.getDouble();

Programming Problems
18. Run program Example_5 using command-line arguments to investigate every combi-

nation of font style and color of text.

19. Write a main method to input a phrase, convert it to uppercase letters of the alphabet,
and write the phrase to the screen.

20. Write a main method to input a phrase, replace the occurrence of the letter 'e' with
'?', and write the phrase to the screen.

21. Write a main method to input three phrases, concatenate the phrases into one phrase,
and write the result to the screen.

22. Input a phrase at the command line, and write a main method to write the number of
words in this phrase to the screen.

23. Write a main method to input the radius of a circle, calculate the circumference and
area of the circle, and write these values to the screen. Assume π to be 3.14159.

86 Chapter 2 Objects

The term wind chill goes back to the Antarctic explorer Paul A. Siple, who coined the term in
a 1939 dissertation “Adaptation of the Explorer to the Climate of Antarctica.” The wind chill

factor describes how cold the wind makes us feel. As the wind blows, it draws heat from our
bodies. The stronger the wind blows, the faster the heat is taken away. Thus, wind chill increases
as the wind speed increases in cold temperatures. The calculation of the wind chill temperature
is based upon a scientific formula that uses the air temperature and wind speed. This and
more information is available on the Environmental Protection Agency Web site
http://www.usatoday.com/weather/wchilfor.htm

1i

24. Write a main method to input the maximum cross-sectional radius of a sphere, calcu-
late the surface area and volume of the sphere, and write these values to the screen.
Assume π to be 3.14159.

25. Write a main method to input a weight in kilograms, convert this to pounds, and write
both weights on the screen. 1 kg = 2.2 pounds.

26. Write a main method to input a length in meters, convert this to feet and inches, and
write both lengths on the screen. 1 meter = 39.4 inches.

27. Write a main method to input a velocity in miles per hour (mph), a distance in miles,
calculate the time (in hours) it would take to cover the distance, and write all three
quantities on the screen.

28. Write a main method to input two times in a 24-hour format, calculate the time (in
hours and minutes) between the two times, and write the result on the screen. In this
question assume that the second time to be input is greater than the first time.

29. Write a program to calculate and output the distance traveled by a car on a tank of gas.
Input the capacity of the tank, and input the average rate of gas consumption per mile by
the car.

30. Write a program to input any amount of US dollars and convert the amount into any
chosen world currency and output your results. Input the conversion factor for the cur-
rency of your choice.

31. The wind chill temperature is based upon the air temperature and the speed of the wind.
The National Weather Service uses the following expression to calculate the wind chill.

T(wc)=0.0817(3.71V**0.5+5.81-0.25V)(T-91.4)+91.4; where

T(wc) is the wind chill;
V is the wind speed in statute miles per hour;
T is the temperature in degrees Fahrenheit.

Write a computer program to input the wind speed and temperature and calculate and
display the wind chill temperature.

http://www.usatoday.com/weather/wchilfor.htm

C H A P T E R 3

Object-Oriented
Programming
In this chapter you will be shown how to create your own classes
and their constructors and methods, and you will be introduced to
some of the techniques for writing programs using the object-oriented
programming paradigm.

By the end of this chapter you should have an understanding of the following
topics.

■ The creation of an abstract data type

■ Creating constructors, instance methods, and class methods

■ Returning a value from a method

■ Passing data as arguments in a method call

■ The scope and life of identifiers

■ The Audio, FilmStrip, and Timer classes from the avi package

■ Designing and writing basic object-oriented programs

87

88 Chapter 3 Object-Oriented Programming

3.1 Abstract Data Type

Computer programs can be very complex, perhaps the most complicated arti-
facts ever created by humans. One way to manage and control this complexity is
with abstraction. An abstraction of something is a simplified view of it—the
abstraction “hides” the unnecessary details and allows us to focus only on the
parts of interest to us. For example, a chart in a newspaper might be an abstrac-
tion of how world money markets are behaving.

We use many abstractions in our day-to-day lives. Consider a car. Most of us
have an abstract view of how a car works. We know how to interact with it to get
it to do what we want it to do: we put in gas, turn a key, press some pedals, and so
on. But we don’t necessarily understand what is going on inside the car to make it
move—and we don’t need to. Millions of us use cars everyday without under-
standing the details of how they work. Abstraction helps us get to school or work!

A program can be designed as a set of interacting abstractions. In Java, these
abstractions are captured in classes. The creator of a class obviously has to know
all the details of the class. But once the class is created, other programmers can
use the class without knowing its internal details. They only have to know its
interface, just as the driver of a car can use the vehicle without knowing how the
engine works. For example, you can use the classes of the book’s avi package to
do neat audio-visual output without knowing the details of how the classes
work.

Abstract data types (ADTs) are an important form of program abstraction. An
ADT consists of some hidden or protected data and a set of methods to perform
actions on the data. When we hide data in a class, we say that the data have been
encapsulated. Encapsulation is illustrated in Figure 3.1. The figure shows a class
that defines private data, public methods, and public constructors. It shows
that objects can be instantiated from the class with the new operator. Finally, it
shows that the private data is “hidden” inside the objects, as indicated by the
heavy circle surrounding the data, and that it can be accessed only through the
public instance methods. The implementation of the data, constructors, and
methods is normally hidden from a programmer who uses the class. The class
acts as a boundary surrounding the constructor, methods, and data.

Why should we want to hide the implementation details of a class? By deny-
ing other programmers, or even other parts of your program, access to the
implementation details, you can safely modify the implementation without wor-
rying that you may inadvertently introduce errors into other code that uses the
class. As long as the interface and functionality do not change, the rest of the
system should not be affected by changes you make within the class.

Another reason for encapsulation is to preserve the integrity of the data in
your class. Direct access to the class data can result in variables not being cor-
rectly updated. Access to the data must be through trusted methods of the class.

In documenting the interface of an encapsulated class, there is no need to
reveal the constants, variables, and methods that programmers cannot access.

3.1 Abstract Data Type 89

Class defines

private data

public methods (instance methods)

public constructors

instance method

actual data

Object 1

instance method

actual data

Object 2

newnew

instance method
invocation
provides access
to private data

instance method
invocation
provides access
to private data

Figure 3.1 ADTs encapsulation data and methods

The appearance of the interface becomes uncluttered and helps to improve the
documentation of the class.

The concept of an abstract data type is not new. Consider for a moment the
class String. A variable of type String can be instantiated, using the String
constructors, to reference a String object; this object can invoke many prede-
fined instance methods such as length, concat, replace, toUpperCase, and
so on. The method of implementing the data type String is hidden from the
programmer. Without consulting with the author of the class String, there is
no way of knowing the internal format of a String. We can of course guess that
it might be stored as an array of characters! However, even if it is represented in
this manner, we are precluded from accessing the array directly and must rely
upon access through those instance methods that are supplied for the class.

Similarly, the implementations of the constructors and instance methods are
hidden from the programmer. As a programmer, there is no way of inspecting
how these operations are carried out since the class will be stored as Java byte
codes. Only the implementers of the classes should have access to the Java
source code, to prevent other programmers from changing well-engineered soft-
ware.

A programmer may declare variables of type String and apply any of the set
of instance methods to objects of this type.

90 Chapter 3 Object-Oriented Programming

A private variable or method is visible only within its own class. Classes may not be
private. A public class is visible anywhere; it can be seen, depending on the file

accessibility. A public variable or method is visible anywhere its class is visible.

1i

A class may contain a number of instance variables that represent the data for a particular
object. Each object will have its own set of instance variables, which represent the state of

an object.

1i

The String example demonstrates the following features that embody the
requirements of the abstract data type.

■ The abstraction has created a data type, for example, String.

■ It is possible to declare variables of the type, for example, String alpha-
bet.

■ The type contains a set of instance methods for the access and manipulation
of data of the said type, for example, length.

■ The implementation of the type, behind the scenes, uses whatever data and
methods are necessary.

■ Access to the type is through a restricted interface with the implementation
details being hidden from the programmer who uses the type.

In creating classes, we will be creating abstract data types that conform to the
above requirements. In the construction of an abstract data type, the data should
be kept private to prevent access and hence changes to the values from outside
of the class. The constructors and instance methods that are to be accessed from
outside the class should be defined as public.

3.2 Constructors

The instantiation of an object is understood to be the allocation of memory for
storing the object’s data and the initialization of this memory space with appro-
priate values.

Instantiation is made possible by the use of a constructor, which serves several
purposes.

3.2 Constructors 91

SYNTAX

Constructor:

public class-name (formal-parameter-list)
{

declarations
statements

}

■ A constructor is given the same name as the class to allow for the data type
of objects to be declared.

■ A constructor is normally used in conjunction with the keyword new, which
allocates memory space from the heap. The heap is an area of memory set
aside for the dynamic allocation of computer memory to objects during run
time.

■ A constructor provides the storage in memory and the initialization of the
instance variables allocated to the object.

■ For each separate invocation of the constructor, a new object will become
instantiated.

The syntax of a constructor follows.

A constructor must be defined as being public, otherwise there is no means of
using the constructor from outside of its class. The name of the constructor is
always the same as its class name. Data values that specify a particular object are
passed to the constructor via the formal parameter list. It is these values that are
used to initialize the instance variables of the class.

In Chapter 2, when you used command-line arguments to pass data to the
main method, you were transferring data to the formal parameter list
(String[] args) of the main method. At the end of the Chapter 2 program-
ming exercises, you were asked to experiment with different arguments for the
Window class. By inputting different values for the color and type of font, you
had the ability to change the color and style of text on the screen.

Passing different arguments to the formal parameters of a method gives you
the power to reuse the method again and again with different data sets.

We will use the solution to the following problem to demonstrate the use of
constructors and other Java constructs that are discussed later in this chapter.

Statement of the Problem
Write a program to input the length, width, depth at the shallow end, and depth
at the deep end of a rectangular swimming pool. Then calculate the time it takes
in hours to fill the swimming pool. Assume the rate of flow of water into the

92 Chapter 3 Object-Oriented Programming

pool is 50 U.S. gallons per minute and that a cubic foot of water has a capacity
of 7.48 U.S. gallons. Assume a uniform increase in depth when moving from
the shallow end to the deep end.

The solution involves calculating the volume of the swimming pool (remem-
ber that a pool is not always a cuboid), and multiplying the volume by 7.48 to
obtain the capacity of water in U.S. gallons of the pool. The time it takes to fill
the pool with water is calculated by dividing the capacity of the pool by rate of
flow of water into the pool, and then dividing this result by 60 to return a time
in hours.

We can create a class SwimmingPool that represents the boundary of an
abstract data type and contains the data about any pool.

public class SwimmingPool
{

// instance variables
private float lengthOfPool;
private float widthOfPool;
private float shallowDepthOfPool;
private float deepDepthOfPool;

}

To this class we need to add a constructor to enable the instance variables of the
class to be initialized when the constructor is used to create an object of type
SwimmingPool.

public SwimmingPool(float length,
float width,
float shallowEndDepth,
float deepEndDepth)

{
lengthOfPool = length;
widthOfPool = width;
shallowDepthOfPool = shallowEndDepth;
deepDepthOfPool = deepEndDepth;

}

The constructor can be used to create swimming pools of various sizes. For
example, the execution of:

SwimmingPool largePool = new SwimmingPool(100.0f,30.0f,3.0f,8.0f);

will first assign the four actual parameters (100.0f,30.0f,3.0f,8.0f) to the
four formal parameters (length, width, shallowEndDepth, deepEndDepth)

3.3 Instance Methods 93

and then initialize the instance variables lengthOfPool, widthOfPool,
shallowDepthOfPool, and deepDepthOfPool to the real values 100.0f,
30.0f, 3.0f, and 8.0f respectively. Similarly, the statement:

SwimmingPool smallPool = new SwimmingPool(50.0f,20.0f,5.0f,5.0f);

initializes the instance variables lengthOfPool, widthOfPool, shallow-
DepthOfPool, and deepDepthOfPool to the real values 50.0f, 20.0f, 5.0f,
and 5.0f, respectively. Note in this last example that the swimming pool is of
uniform depth.

Let’s look more closely at how the parameters behave. The call to the con-
structor using SwimmingPool(100.0f,30.0f,3.0f,8.0f); passes four argu-
ments to the formal parameter list of the constructor.

■ The number of arguments in the actual parameter list of a method call must
be the same as the number of parameters specified by the formal parameter
list of the method, in this example, the constructor.

■ The data types of the arguments must be the same as those data types in the
formal parameter list. However, you will see later in the book that there are
exceptions to this rule.

■ The order of the arguments in the actual parameter list must be the same as
the order of the parameters in the formal parameter list.

In the swimming pool example, the actual parameter list for a large pool was

(100.0f, 30.0f, 3.0f, 8.0f);

which corresponds with the formal parameter list of

(float length, float width, float shallowEndDepth, float deepEndDepth)

Notice that between the two lists the number of arguments and parameters is
the same; the data types between the corresponding arguments and parameters
are the same, and the order in which the arguments and parameters appear is
the same.

3.3 Instance Methods

As you are well aware, instance methods relate to some aspect of the instantiated
object. For example, the length of a string, the conversion of a string
toUpperCase characters, and so on. In the class SwimmingPool, suitable

94 Chapter 3 Object-Oriented Programming

SYNTAX

Method:

modifier(s) return-type method-name (formal-parameter-list)
{

declarations
statements

}

instance methods are of the “query” type rather than the “command” type and
might be:

public float volumeOfWater();
public float capacityOfPool();
public float timeToFillPool(float rateOfFlow);

These return the volume of the pool, the capacity of water in the pool, and the
time taken to fill the pool with water, respectively. Notice that these methods
return single values, and only the instance method timeToFillPool requires a
formal parameter, called rateOfFlow. Note that we did not have to use a
parameter for the rate of flow but that we have chosen to do so to show how
parameters work.

Instance methods pass a message to the object, and the object responds
accordingly. Therefore, we can find the volume, capacity, and time to fill the
pool by invoking the instance methods as follows.

largePool.volumeOfWater();
largePool.capacityOfPool();
largePool.timeToFillPool(RATE_OF_FLOW);

The syntax of a method definition follows.

The modifier used in the swimming pool example is public; however, as you
will soon discover, it is possible to apply other modifiers to a method.
Remember a method described as public means that it can be accessed from
outside of the class. The return-type identifies the type of value that the method
will return. This can be a primitive type or a class. If no data is returned by the
method, the keyword void is used for the return-type.

The formal-parameter-list indicates the data types for any arguments the
function expects to receive from the caller. Each individual argument passed to
the method must have its own corresponding parameter. If no arguments are
being passed to the method, then the parentheses remain empty.

3.3 Instance Methods 95

SYNTAX

Return Statement:

return expression;

Declarations refer to local constant and variable declarations for use within
the method, and statements refer to the executable instructions within the
method.

The return-type identifies the type of the value that the method will return
with its return statement.

The syntax of the return statement is:

where the expression may be omitted depending upon the use of the statement.
The three instance methods of the SwimmingPool class are constructed as

follows

public float volumeOfWater()
{

volume =
0.5f*(lengthOfPool*widthOfPool)*(shallowDepthOfPool+deepDepthOfPool);
return volume;

}

public float capacityOfPool()
{

capacity = volume * CAPACITY_CUBIC_FOOT;
return capacity;

}

public float timeToFillPool(float rateOfFlow)
{

return (capacity / rateOfFlow)/60.0f;
}

where the constant CAPACITY_CUBIC_FOOT is declared within the class
SwimmingPool. Both volume and capacity must be declared as instance vari-
ables within the class.

The following computer listing defines the completed SwimmingPool class.
This code may be stored in a text file with the name SwimmingPool.java. The
class is compiled using the javac command that you used in the Introduction.

96 Chapter 3 Object-Oriented Programming

// The creation of the SwimmingPool class

public class SwimmingPool
{

// constant
private final float CAPACITY_CUBIC_FOOT = 7.48f;

// instance variables
private float lengthOfPool;
private float widthOfPool;
private float shallowDepthOfPool;
private float deepDepthOfPool;
private float volume;
private float capacity;

// constructor
public SwimmingPool(float length,

float width,
float shallowEndDepth,
float deepEndDepth)

{
lengthOfPool = length;
widthOfPool = width;
shallowDepthOfPool = shallowEndDepth;
deepDepthOfPool = deepEndDepth;

}

// instance methods
public float volumeOfWater()
{

volume = 0.5f*(lengthOfPool*widthOfPool)*
(shallowDepthOfPool+deepDepthOfPool);

return volume;
}

public float capacityOfPool()
{

capacity = volume * CAPACITY_CUBIC_FOOT;
return capacity;

}

public float timeToFillPool(float rateOfFlow)
{

return (capacity / rateOfFlow)/60.0f;
}

}

3.3 Instance Methods 97

It would be illogical to attempt to execute this class on the computer. Do
you know why? What we have achieved is to create an abstract data type of a
SwimmingPool. In other words, we can create objects of this type and send vari-
ous messages to these objects. However, we have not created a complete pro-
gram. To do that we need a separate class that contains a main method.

To test the SwimmingPool class we create a class similar to those introduced
in Chapter 2. Such a class is often called a driver class since it lets us “drive” the
class we wish to test. The driver class will contain a main method. Within the
main method it is possible to instantiate a SwimmingPool object and write to
the screen the results of the state of a pool with respect to the volume of water
(cubic feet), capacity (U.S. gallons), and time to fill the pool (hours).

The following listing is contained in a text file with the name
Example_1.java and is compiled using the javac command. Since this file
contains a main method, it is possible to execute the program using the java
command.

For the present time, adopt the practice of ensuring that every class you have
written, as part of a program, must be stored in the same directory or subdirectory.
Later in the book you will be shown how to group all related classes into a package.

// program to demonstrate using the SwimmingPool class

import avi.*;

class Example_1
{

public static void main(String[] args)
{

final float RATE_OF_FLOW = 50.0f;
float volume, capacity, time;

Window screen = new Window("Example_1.java","bold","blue",24);
screen.showWindow();

SwimmingPool largePool = new
SwimmingPool(100.0f,30.0f,3.0f,8.0f);

volume = largePool.volumeOfWater();
capacity = largePool.capacityOfPool();
time = largePool.timeToFillPool(RATE_OF_FLOW);

screen.write("Large Pool\n\tVolume: "+volume+" cubic feet\n");
screen.write("\tCapacity: "+capacity+" US gallons\n");
screen.write("\tTime to fill: "+time+" hours\n\n");

}
}

98 Chapter 3 Object-Oriented Programming

A screen shot of the results from Example_1 follows.

Using the SwimmingPool class for reference, create a class
DecorateARoom that contains the following.

(1) A constructor to initialize instance variables for the length, width, height, win-
dow area, and door area of a room.

(2) Instance methods to return all of the instance variables initialized by the
parameters of the constructor.

(3) An instance method to return the total surface area of the walls of the room.

(4) An instance method to return the number of rolls of wallpaper needed to
paper the walls, given that a roll of paper is 25 feet in length and 3 feet wide.

(5) An instance method to return the number of cans of paint required to cover
the walls (as an alternative to wallpaper), given that a 1 gallon can contains
enough paint to cover an area of 100 square feet.

(6) Compile the DecorateARoom class; if there are no syntax errors then
progress to Step (7).

(7) Write and execute a driver program to test all the methods of the
DecorateARoom class.

NOW DO THIS

3.3 Instance Methods 99

Note that due to the way the SwimmingPool class has been defined, it is
necessary to invoke its exported methods in a specific order, namely
volumeOfWater, capacityOfPool, and timeToFillPool. Otherwise the
instance variables volume and capacity will not be properly initialized. Order
restrictions such as this should usually be avoided and are allowed in some early
examples just to keep the code relatively uncomplicated.

Although the declaration of the variables volume, capacity, and time in
the main method were included here for clarity, they are superfluous. The use of
the variables volume, capacity, and time in the write statements may be
replaced by a direct invocation of the corresponding instance method, as shown
in the code of Example_2.

// program to demonstrate using the SwimmingPool class

import avi.*;

class Example_2
{

public static void main(String[] args)
{

final float RATE_OF_FLOW = 50.0f;

Window screen = new Window("Example_2.java","bold","blue",24);
screen.showWindow();

SwimmingPool largePool = new
SwimmingPool(100.0f,30.0f,3.0f,8.0f);

screen.write("Large Pool\n\tVolume: "+
largePool.volumeOfWater()+" cubic feet\n");

screen.write("\tCapacity: "+largePool.capacityOfPool()+
" US gallons\n");

screen.write("\tTime to fill: "+
largePool.timeToFillPool(RATE_OF_FLOW)+
" hours\n\n");

}
}

The next iteration of the same problem shows you how two swimming pool
objects are created and how the state of each swimming pool is written to the
screen in Example_3.

100 Chapter 3 Object-Oriented Programming

// program to demonstrate using the SwimmingPool class

import avi.*;

class Example_3
{

public static void main(String[] args)
{

final float RATE_OF_FLOW = 50.0f;

Window screen = new Window("Example_3.java","bold","blue",24);
screen.showWindow();

SwimmingPool largePool = new
SwimmingPool(100.0f,30.0f,3.0f,8.0f);

screen.write("Large Pool\n\tVolume: "+
largePool.volumeOfWater()+" cubic feet\n");

screen.write("\tCapacity: "+largePool.capacityOfPool()+
" US gallons\n");

screen.write("\tTime to fill: "+
largePool.timeToFillPool(RATE_OF_FLOW)+
" hours\n\n");

SwimmingPool smallPool = new
SwimmingPool(50.0f,20.0f,5.0f,5.0f);

screen.write("Small Pool\n\tVolume: "+
smallPool.volumeOfWater()+" cubic feet\n");

screen.write("\tCapacity: "+smallPool.capacityOfPool()+
" US gallons\n");

screen.write("\tTime to fill: "+
smallPool.timeToFillPool(RATE_OF_FLOW)+
" hours\n\n");

}
}

3.4 Class Methods 101

Clearly the disadvantage in this coding is the amount of similar code that
has to be repeated for each pool. To reduce this duplication it is possible to code
a new method, local to the driver class, known as a helper method, which will be
called from the main method every time the volume, capacity, and time are
to be written to the screen. This approach is described in the next section.

3.4 Class Methods

An instance method such as the volumeOfWater method of the SwimmingPool
class is invoked through an object of the class, for example, "volume =
largePool.volumeOfWater();". A class method, also known as a static
method, is one that cannot be invoked through an object. To differentiate an
instance method from a class method, one of the modifiers used in the signature
of the class method is declared as static.

A Java application consists of at least one class method, the main method. In
Example_4, a second class method has been introduced to write the volume,

A screen shot follows showing the results of Example_3 being executed.

102 Chapter 3 Object-Oriented Programming

capacity, and time on the screen. The program illustrates how to define a sec-
ond class method within a class, how to call (invoke) this method, and how the
computer returns to the main method after the method has been executed.

// program to demonstrate using the SwimmingPool class
// and to demonstrate the creation of a helper method

import avi.*;

class Example_4
{

// a 'helper' method to display the statistics of the pool
private static void displayStatistics(Window screen,

String nameOfPool,
float volume,
float capacity,
float time)

{
screen.write(nameOfPool+"\n\tVolume: "+volume+" cubic feet\n");
screen.write("\tCapacity: "+capacity+" US gallons\n");
screen.write("\tTime to fill: "+time+" hours\n\n");

}

public static void main(String[] args)
{

final float RATE_OF_FLOW = 50.0f;

Window screen = new Window("Example_4.java","bold","blue",24);

screen.showWindow();

// create a large SwimmingPool object
SwimmingPool largePool = new
SwimmingPool(100.0f,30.0f,3.0f,8.0f);

displayStatistics(screen,
"Large Pool",
largePool.volumeOfWater(),
largePool.capacityOfPool(),
largePool.timeToFillPool(RATE_OF_FLOW));

// create a small SwimmingPool object
SwimmingPool smallPool = new
SwimmingPool(50.0f,20.0f,5.0f,5.0f);

3.4 Class Methods 103

displayStatistics(screen,
"Small Pool",
smallPool.volumeOfWater(),
smallPool.capacityOfPool(),
smallPool.timeToFillPool(RATE_OF_FLOW));

}
}

Those methods that are part of the class, yet are not accessed from outside of
the class, but used to help a public method achieve its goal, should be pri-
vate. We will often refer to such methods as helper methods.

The main method is executed before any other method. Having created a
window object and shown this object on the screen, a large swimming pool
object is created. The computer then calls (branches to) the
displayStatistics method, passing across the data for the large swimming
pool, found in the actual-parameter list of the class method call.

After the displayStatistics class method has been executed, the computer
automatically returns to the next statement after the call to the class method. This
is one case in which you do not explicitly need to code a return statement because
this class method does not return a value. The computer returns to the statement
in the main method to create a small swimming pool object. Notice that com-
ments are ignored by the computer when executing the program.

The computer then calls (branches to) the displayStatistics method for a
second time, passing across the data for the small swimming pool, found in the
actual-parameter list of the class method call. Once again the statements of the
displayStatistics class method are executed, and the computer returns to the
next statement after the call to the class method. But this is now then end of the
main method; therefore, the computer returns to the operating system prompt.

Class methods should be defined as static and public if they are to be
accessed from outside of the class; otherwise, they should be labeled as static
and private.

In effect, at this point we have identified two ways of classifying methods:

■ A method defined as static is called a class method; a method not defined
as static is called an instance method.

■ A private method other than the main method is often called a helper
method; for now, if a method is not private, it is public; later we will
learn more categories of protection for methods.

So, a method can be either a class method or an instance method, and it can
be either a private method or a public method. We can redraw Figure 3.1, so
that its modified form appears as Figure 3.2, to reflect the most interesting pos-
sibilities. The figure emphasizes that public class methods are invoked through
the class itself, whereas instance methods are invoked through an instance of the
class, i.e., through an object. Furthermore, you can see that helper methods can

104 Chapter 3 Object-Oriented Programming

Class defines

private data public static methods (class)

public methods (instance) private static methods (class, helper)

public constructors private methods (instance, helper)

instance method

actual data

Object 1

instance method

helper method helper method

actual data

Object 2

newnew

instance method
invocation
provides access
to private data

instance method
invocation
provides access
to private data

Static
method
invocation

Figure 3.2 A class may define constructors, instance, class, and helper methods

be invoked only from other methods defined within the class; they cannot be
invoked from outside the class like public methods. Note also that it is possible
for a class to contain more than one constructor. This fact was obvious from the
String class; however, it is a feature that we have not used in defining our own
classes. We will use this feature in later chapters.

3.5 Scope and Lifetime of Identifiers

The class Example_4 can be rewritten as Example_5, so that there is no need to
explicitly pass the object screen as a Window parameter. This requires that the
declaration of the screen object is moved so that it is “visible” from both the
main method and the displayStatistics class method. In doing this, it is
necessary to qualify the screen object as being static. You will notice from the
computer listing that there is no need to include the screen as a parameter in the
signature of the displayStatistics class method.

3.5 Scope and Lifetime of Identifiers 105

// program to demonstrate class scope for a window object

import avi.*;

class Example_5
{

static Window screen = new Window("Example_4.java","bold","blue",24);

// a 'helper' method to display the statistics of the pool
private static void displayStatistics(String nameOfPool,

float volume,
float capacity,
float time)

{
screen.write(nameOfPool+"\n\tVolume: "+volume+" cubic feet\n");
screen.write("\tCapacity: "+capacity+" US gallons\n");
screen.write("\tTime to fill: "+time+" hours\n\n");

}

public static void main(String[] args)
{

final float RATE_OF_FLOW = 50.0f;

screen.showWindow();

// create a large SwimmingPool object
SwimmingPool largePool = new
SwimmingPool(100.0f,30.0f,3.0f,8.0f);

displayStatistics("Large Pool",
largePool.volumeOfWater(),
largePool.capacityOfPool(),
largePool.timeToFillPool(RATE_OF_FLOW));

// create a small SwimmingPool object
SwimmingPool smallPool = new
SwimmingPool(50.0f,20.0f,5.0f,5.0f);

displayStatistics("Small Pool",
smallPool.volumeOfWater(),
smallPool.capacityOfPool(),
smallPool.timeToFillPool(RATE_OF_FLOW));

}
}

cl
as

s
sc

op
e

106 Chapter 3 Object-Oriented Programming

Block scope is not always defined by the use of braces { }. This will become evident in
later chapters on selection and repetition.

!

The scope of an identifier refers to the region of a program in which an iden-
tifier can be used. An identifier can have either class scope or block scope. An
identifier with class scope is accessible from its point of declaration throughout
the entire class. Example_5 illustrates that the object screen may be used by
any method declared within the class. The arrowed line drawn along the left-
hand side of the code indicates the scope of the identifier screen within the
class.

By contrast, an identifier with block scope is accessible only from the point of
declaration to the end of the block. A block begins with an open brace { and
ends with a close brace } and contains declarations and executable statements.
Example_5 illustrates the block scope of the constant RATE_OF_FLOW. This
identifier is not accessible outside of the main method.

The lifetime of an identifier is the period during which the value of the identifier
exists in computer memory. The lifetime of an identifier will vary according to
the nature of the identifier. Identifiers declared as being static exist for the life
of the program, such as the object screen in Example_5, whereas parameters
and identifiers having block scope exist only during the execution of the
method. For example, in Example_5, the value of the parameters nameOfPool,
volume, capacity, and time will be destroyed when the displayStatistics
method is not being executed.

When an object goes out of scope, the amount of memory allocated to stor-
ing that object is returned back to the heap for future use by other objects.

The Java system automatically returns memory to the heap when it is no
longer required. This process is known as garbage collection.

3.6 Software Development

The stages in the development of a software project are illustrated in Figure 3.3.
Notice that although the software development cycle consists of a set of four
phases, each phase is not deemed to be entirely completed before moving on to
the next phase. Because the development of software evolves through the expe-
rience gained at each stage, it is possible to go back to any of the stages and
modify the solution to the problem.

During analysis, the customer who commissioned the system to be built and
the software developers who construct the system meet to agree upon a descrip-
tion of the problem. The outcome of the analysis phase is a description of the
functionality of the system, which conveys the behavior of the software system

3.6 Software Development 107

Analysis

Design

Programming

Maintenance

Figure 3.3 Software development life cycle

to be constructed. It is often desirable at this stage to identify a set of test cases,
i.e., input for the program and the corresponding expected output. This process
helps clarify the description of the system and can be used later during the
design and programming stages.

In the design phase, plans are generated for building the system. This stage
may, for example, include the identification of classes and their interfaces. After
a design is completed, it is possible to look for any shortcomings in the proposed
system, iterate back to the analysis phase, and, if necessary, make appropriate
modifications to the requirements.

The programming of a software project combines coding, testing, and the
integration of the various software components to construct the software sys-
tem. Together, the design and programming phases are the phases you will con-
centrate on most as you work through this book.

A software system is not static. With use, and with changes in requirements,
the system may need to be modified to meet changing demands. The mainte-
nance phase may take the form of simply changing and retesting small amounts
of code. Alternatively, a modification to the software system may require further
analysis, design, coding, and testing.

108 Chapter 3 Object-Oriented Programming

Figure 3.4 The programming phase in software development

Figure 3.4 illustrates five major activities that form the design and program-
ming parts of the software development life cycle.

3.7 Object-Oriented Program Design

Before attempting to design and code Java classes we need to state a few guide-
lines. These guidelines will be used in the case studies and should help you to
develop a systematic approach to problem solving and good programming
habits.

3.7 Object-Oriented Program Design 109

SwimmingPool Example_5

name of class

Figure 3.5 The simplest UML representation of classes

Identify the Classes and Methods
Document in English how you plan to tackle the problem from the information
provided. Problem analysis should include sifting through the information and
determining what classes and methods are required. Show any calculations that
will be used on the data since this will be helpful when coding methods that use
these calculations.

In object-oriented programming we tend to focus upon the production of
classes at an early stage in the design. We identify the data used in the problem
and analyze which methods should operate upon data of this type.

You may find the following technique useful in determining the classes in
your program.

The identification of classes and objects is the hardest part of object-ori-
ented design. One simple technique for identifying classes is to write a descrip-
tion of the problem, list all the nouns that appear in the description, and then
choose your possible classes from the list.

For example, “Write a program to input the dimensions of a swimming pool
and calculate and display the volume, capacity, and time to fill the pool.” From
the list of possible nouns only swimming pool can be considered as a viable class.
We can visualize a swimming pool as an object and instantiate many swimming
pool objects of different dimensions.

The nouns dimensions, volume, capacity, and time (to fill) all represent attrib-
utes of a swimming pool and can hardly be visualized as objects.

Figure 3.5 illustrates that a class may be represented in UML by a rectangle
containing only the name of the class.

Once you have identified a class, the next step is to determine the operations
that an object of that class can perform or can have performed upon itself, and
also the information an object of the class must maintain.

If we identify all the verbs in the description of the problem, we can choose a
list of possible actions that an object may perform or have performed upon
itself. For example, “Write a program to input the dimensions of a swimming
pool and calculate and display the volume, capacity and time to fill the pool.”
From the list of verbs, input, calculate, and display are possible candidate meth-
ods for an object of type SwimmingPool.

110 Chapter 3 Object-Oriented Programming

The technique of identifying the nouns and verbs from the description to the problem is by
no means the only approach, and it definitely does not apply well to anything beyond sim-

ple problems. However, the method is sufficient for the majority of the problems appearing in
this book. Another approach to discovering classes, methods, and associations between
classes will be explained in Chapter 10.

!

Example_5SwimmingPool

-lengthOfPool
-widthOfPool
-shallowDepthOfPool
-deepDepthOfPool
-volume
-capacity

+SwimmingPool
+volumeOfWater
+capacityOfPool
+timeToFillPool

-displayStatistics
+main

name of class

attributes (data)

constructor
and
methods

Note: + implies the item is public and - implies the item is private

Figure 3.6 An expanded UML representation of classes, their attributes, and methods

Data representing the dimensions of the swimming pool will be input to the
object using the class constructor. In the SwimmingPool class the dimensions of
the pool represent the instance data of the class. The attributes of
lengthOfPool, widthOfPool, and depthOfPool describe the data of the
SwimmingPool class.

The verb calculate applies to calculating the volume, capacity, and time to fill
the pool; therefore, volumeOfPool, capacityOfPool, and timeToFillPool
are all methods that return further attributes of a swimming pool. The verbs dis-
play and fill may be dismissed since the three methods already identified incor-
porate all the functionality required to acquire information about the pool.

An alternative UML representation of classes is depicted in Figure 3.6. Notice
that the rectangle is split into three parts. The top part is used, as before, to
identify the class by name; the middle part describes the attributes or data for
the class; the bottom part lists the operations contained within the class. Notice
from the Example_5 class that it is possible to leave the attributes part of the
diagram blank.

3.7 Object-Oriented Program Design 111

Example_5 SwimmingPool

Window

Note: The broken line with the open arrowhead
indicates a dependency relationship.

Figure 3.7 The UML representation of dependencies between classes

The next stage looks for any dependencies that may exist between classes.
Classes can build upon and cooperate with other classes. Often one class
depends upon another class because it cannot be used unless the other class
exists.

Figure 3.7 illustrates how the Example_5 class is dependent upon the exis-
tence of a SwimmingPool class and a Window class (found in the avi package).
Note the use of broken lines with open arrow heads to denote the dependency
relationship.

Algorithm Development
An algorithm is a solution to a problem and is expressed as a series of operations
for the computer to obey. Each constructor and method will have its own algo-
rithm. Normally, both the constructors and methods are reasonably short in
length and may be coded directly into the Java language. However, when an
algorithm is particularly complex, it is advisable to represent the algorithm as a
narrative of the solution written in English, known as pseudocode, rather than in
Java code. You can then sort out the logical order of operations before coding
the algorithm into Java code. The pseudocode can, if necessary, be refined into
further pseudocode, showing more detail about the solution to the problem,
until eventually the pseudocode can be mapped directly into Java code. At this
stage it is also possible to identify what helper methods, if any, are required.

As an example of the use of pseudocode, consider the following generaliza-
tion of the statements to create two swimming pools. Do realize, however, that
designing algorithms using pseudocode is beneficial only before the Java code is
written and not afterwards!

1. create a window object—screen

2. create a swimming pool object—large pool

3. write the statistics of the large pool to the screen

4. create a swimming pool object—small pool

5. write the statistics of the small pool to the screen

112 Chapter 3 Object-Oriented Programming

This initial design of the statements to be used by the main method shows an
obvious repetition of writing the statistics of the pool to the screen twice in the
same method. If we assume the creation of a helper method to write the statis-
tics of a swimming pool to the screen, the pseudocode design can be rewritten
to take this fact into account.

1. create a window object—screen

2. create a swimming pool object—large pool

3. call static method to write the statistics of the large pool to the screen

4. create a swimming pool object—small pool

5. call static method to write the statistics of the small pool to the screen

The use of pseudocode will also be demonstrated in later case studies in the
book.

Testing
Having designed a solution and coded it into the Java language, the next step is
to trace through the algorithm with test data to verify that the solution contains
no logical errors. Logical errors are mistakes in the design of the program, such as
a branch to a wrong statement, or the use of a wrong mathematical formula.

Programs can be tested, either by the programmer tracing through the
design and program code, known as desk checking, or by peer-group inspection.

To desk check a program, invent suitable test data such that the type and
nature of the data is representative of the problem. Numerical data should be
chosen for ease of calculation. Use the variables defined in the method being
tested to construct headings for the desk-check table. Use the test data to trace
through the algorithm line-by-line, obeying the instructions, and modifying the
values of the variables in the table as required. The desk check makes it possible
to predict the results before the program is run on the computer.

In peer-group inspection, members of the programming team review the
accuracy of a design or program and determine whether it meets the original
specification.

Compilation and Execution
During compilation, errors may be detected in the way the grammar of the
computer language has been used. These errors, known as syntax errors, are asso-
ciated with the wrong construction of computer language statements.

When the compilation is successful, and regardless of the testing technique
adopted, further testing, often using the same test data as in the desk check, is
always carried out by running the program with test input and checking if the
output is correct. This testing phase should be much more extensive than the
desk-checking stage and therefore additional test cases should be identified.
When completed, the programmer should be confident that the code will per-
form to meet the original requirements specification.

3.7 Object-Oriented Program Design 113

Documentation
Despite documentation being discussed as the fifth activity in programming, it
is used and produced during the other four activities, and for this reason docu-
mentation can be regarded as an activity that occurs throughout the entire pro-
gramming cycle.

Over a period of time a program may be changed, and indeed evolve, as the
computer project to which it contributes evolves. Documentation involves stat-
ing the purpose of the program, the method of solution (both pseudocode, if
applicable, and program code), the stages of testing that it has undergone, and
other necessary facts.

The documentation of a program will usually conform to the in-house stan-
dards of an organization.

The standard Java tools include a documentation aid called javadoc, the
Java API documentation generator. The full details of the javadoc tool are
given in the documentation you were instructed to download from the Sun Web
site in the Introduction. However, we include the following brief description of
its use, to encourage you to use it to document all your classes and methods.

Before the coding of a method, even before the constructor, include a com-
ment as follows.

/**

Textual annotation of the purpose of the method.

@param

Name of parameter followed by a description of its purpose. (This line must be
repeated for each parameter the method contains.)

@return

Description of the data being returned. (This line is omitted if the method
returns void.)

*/

For example, these new-style comments were incorporated into the coding of
the SwimmingPool class as follows.

// program to demonstrate the creation of a class

public class SwimmingPool
{

// constant
private final float CAPACITY_CUBIC_FOOT = 7.48f;

// instance variables
private float lengthOfPool;

114 Chapter 3 Object-Oriented Programming

private float widthOfPool;
private float shallowDepthOfPool;
private float deepDepthOfPool;
private float volume;
private float capacity;

// constructor
/**
The SwimmingPool class enables an object that represents any
rectangular-shaped swimming pool to be created.
@param length is the length of the pool.
@param width is the width of the pool.
@param shallowEndDepth is the depth of the pool at the shallowest end
@param deepEndDepth is the depth of the pool at the deepest end
*/
public SwimmingPool(float length,

float width,
float shallowEndDepth,
float deepEndDepth)

{
lengthOfPool = length;
widthOfPool = width;
shallowDepthOfPool = shallowEndDepth;
deepDepthOfPool = deepEndDepth;

}

// instance methods
/**
Calculates the volume of water in the pool.
@return The volume of water in cubic feet.
*/
public float volumeOfWater()
{

volume = 0.5f*(lengthOfPool*widthOfPool)*
(shallowDepthOfPool+deepDepthOfPool);

return volume;
}

/**
Calculates the capacity of the pool.
@return The capacity of the pool in US gallons.
*/
public float capacityOfPool()
{

3.7 Object-Oriented Program Design 115

capacity = volume * CAPACITY_CUBIC_FOOT;
return capacity;

}

/**
Calculates the time to fill the pool.
@param rateOfFlow rate of flow of water into the pool in US gallons
per minute.
@return Time to fill the pool in hours.
*/
public float timeToFillPool(float rateOfFlow)
{

return (capacity / rateOfFlow)/60.0f;
}

}

The documentation is normally generated after the compilation phase is satis-
factorily completed with no errors present in the source code. Use the same win-
dow (MS-DOS or terminal) that you used for compilation to input the
javadoc command. A simplified form of the syntax to produce Java documen-
tation is:

javadoc classname.java

Notice the amount of information that is output by this command during the
automated documentation process.

C:\chap_3>javadoc SwimmingPool.java
Loading source file SwimmingPool.java...
Constructing Javadoc information...
Building tree for all the packages and classes...
Building index for all the packages and classes...
Generating overview-tree.html...
Generating index-all.html...
Generating deprecated-list.html...
Building index for all classes...
Generating allclasses-frame.html...
Generating index.html...
Generating packages.html...
Generating SwimmingPool.html...
Generating serialized-form.html...
Generating package-list...
Generating help-doc.html...
Generating stylesheet.css...

116 Chapter 3 Object-Oriented Programming

Figure 3.8 An illustration of the online documentation being viewed by a browser

A small sample of the online documentation generated by javadoc for the
SwimmingPool class is shown in Figure 3.8.

To conclude, the design and programming stages contain the activities of
identifying classes and methods, designing and coding constructors and meth-
ods, testing the code, compiling and testing the program on the computer, and
last but not least, continually documenting all of these activities.

CASE STUDY

Cutting Logs
Statement of the Problem. An automated sawmill uses computer-controlled equipment to cut
logs to set sizes and report on the amount of wasted timber. In the absence of the equipment,
write a program to input the length of a log and the size of the pieces to be cut from the log.
Calculate the number of whole pieces cut from the log and the length of wasted timber. Repeat
the process for any number of different-sized logs to be cut to individual set sizes for each log.

Case Study: Cutting Logs 117

Calculate the total number of whole pieces of log that are cut to size and the accumulated waste
(off-cuts) from all the logs. Display the information about the logs at the end of the program.

Given the length of a log and the size that each log must be cut, the number of pieces that
may be cut from a log is computed using the expression:

numberOfPieces = (int)(lengthOfWood / cutSize);

The length of wasted wood from this log would be

lengthOfWood - (numberOfPieces * cutSize);

The total length of wasted wood is therefore calculated using the expression:

totalWasted = totalWasted + lengthOfWood - (numberOfPieces * cutSize);

Identification of Classes and Methods
By analyzing the nouns in the specification of the problem it is possible to identify a number of
candidate classes.

Write a program to input the length of a log and the size of the pieces to be cut from the log.
Calculate the number of whole pieces cut from the log and the length of wasted timber. Repeat the
process for any number of different-sized logs to be cut to individual set sizes for each log. Calculate
the total number of whole pieces of log that are cut to size and the accumulated waste (off-cuts)
from all the logs. Display the information about the logs at the end of the program.

The noun log specifies a real-world object, a piece of timber, that you can touch (and smell).
This is a natural candidate for a class. The nouns such as length and size are attributes of the
whole log before it is cut, and the nouns whole pieces and wasted timber are attributes of a log
after it has been cut.

A second candidate class is the program, in this case, Example_6. It is in this class that we
can input data on a log and, after the log has been cut, display information on the number of
whole pieces and wasted timber. We conclude that suitable classes are Log and Example_6.

By performing an analysis on the verbs in the problem specification, it is possible to deter-
mine candidate methods for the class log.

Write a program to input the length of a log and the size of the pieces to be cut from the log.
Calculate the number of whole pieces cut from the log and the length of wasted timber. Repeat
the process for any number of different-sized logs to be cut to individual set sizes for each log.
Calculate the total number of whole pieces of log that are cut to size and the accumulated waste
(off-cuts) from all the logs. Display the information about the logs at the end of the program.

The verb input, to input the length and size of a log, can be implemented as the constructor
to input this data and initialize attributes of the Log class. The verb cut, to cut a log into a num-
ber of pieces, can be implemented as an instance method, since it is a command to change the
state of a log. This method is responsible for performing the calculations on the number of
whole pieces cut from a log and the amount of waste wood from a log.

118 Chapter 3 Object-Oriented Programming

However, it is also necessary to calculate the total number of whole pieces cut and the accu-
mulated waste from many logs. These methods do not relate to a single object and, therefore,
cannot be invoked using a single object. The methods are class methods that return the total
number of whole pieces and the accumulated waste timber.

We conclude that suitable methods for the Log class are: the constructor Log, the instance
method cut, and the class methods totalCut and waste.

The only method in the class Example_6 is the main method. This is essentially a driver to
test the validity of the code in the Log class.

The representation of classes is shown in Figure 3.9.

Algorithm Development
Every object has its own set of instance variables. In this example, if three Log objects were
instantiated, each would have its own value for the length of the log and the size of the pieces
that each log was to be cut. The problem demands that we keep a tally on the total number of
whole pieces cut from all the logs and the amount of accumulated waste from all the logs. These
variables cannot be instance variables since they relate to more than one object. The variables are
class variables, they are defined as being static, and they only have one set of data values regard-
less of the number of Log objects that are instantiated. The Log class, therefore, contains the
following class and instance variables.

Example_6 Log

-totalPiecesCut
-totalWasted
-lengthOfWood
-cutSize

+Log
+cut
+totalCut
+waste

 +main

Figure 3.9 UML representation of classes

class Log
{

// class variables
private static int totalPiecesCut = 0;
private static float totalWasted = 0.0f;

Case Study: Cutting Logs 119

// instance variables
private float lengthOfWood;
private float cutSize;
.
.

}

The constructor simply initializes the instance variables lengthOfWood and cutSize from val-
ues passed via the formal parameter list as follows.

// constructor
public Log(float length, float size)
{

lengthOfWood = length;
cutSize = size;

}

The instance method cut must not only calculate the number of whole pieces that can be cut
from a single object, but it must also update the class variables, showing the total number of
whole pieces cut from many logs and the accumulated waste from many logs.

// instance method
public int cut()
{

int numberOfPieces;

numberOfPieces = (int)(lengthOfWood / cutSize);
totalPiecesCut = totalPiecesCut + numberOfPieces;
totalWasted = totalWasted+lengthOfWood - (numberOfPieces * cutSize);

return numberOfPieces;
}

The class methods return the total number of whole pieces cut for all logs and the accumulated
waste for all logs, respectively.

// static class methods
public static int totalCut()
{

return totalPiecesCut;
}

public static float waste()
{

return totalWasted;

120 Chapter 3 Object-Oriented Programming

}

Testing
Before continuing with the coding of the program it is a good idea to check over its most
important parts. To do this we first devise a set of test data that represents the standard condi-
tions of the problem.

Test data used to create Log objects

Log Object Length Size of Pieces
first log 36.0 17.0
second log 58.5 19.0
third log 42.75 12.0

Next we will use this data to desk check the critical method cut. We build a table of the vari-
ables accessed by cut, including its local variable numberOfPieces, the two class variables, and
the two instance variables. We list these variables across the top of our table. We will now fill
out the rows of the table with the values of the variables over time. We will add two rows to the
table for each time the method cut is invoked—one row for the values of the variables before
the execution of any of the statements and one row for the values of the variables after the exe-
cution of the statements.

Desk check of the instance method cut()

totalPiecesCut totalWasted lengthOfWood cutSize numberOfPieces

0 0.0 36.0 17.0 0
2 2.0 2
2 2.0 58.5 19.0 0
5 3.5 3
5 3.5 42.75 12.0 0
8 10.25 3

The act of carefully filling out this table by tracing through our design will hopefully either
expose errors in our logic or give us confidence that the program is designed correctly.

A listing of the completed class Log follows.

public class Log
{

// static variables
private static int totalPiecesCut = 0;
private static float totalWasted = 0.0f;

// instance variables
private float lengthOfWood;
private float cutSize;

Case Study: Cutting Logs 121

// constructor
/**
The Log class will create a timber log object of a fixed length
and set the size the log is to be cut to.
@param length is the length of a log.
@param size is the length a log is to be cut.
*/
public Log(float length, float size)
{

lengthOfWood = length;
cutSize = size;

}

// instance method
/**
The method cut() is used to cut the log into set lengths.
@return The number of logs cut to size from a single piece of
timber.
*/
public int cut()
{

int numberOfPieces;

numberOfPieces = (int)(lengthOfWood / cutSize);
totalPiecesCut = totalPiecesCut + numberOfPieces;
totalWasted = totalWasted + lengthOfWood -

(numberOfPieces * cutSize);
return numberOfPieces;

}

// static class methods
/**
The method totalCut() returns the total number of logs cut to
various sizes.
@return The total number of logs.
*/
public static int totalCut()
{

return totalPiecesCut;
}

/**
The method waste() returns the total length of wasted timber

122 Chapter 3 Object-Oriented Programming

(offcuts).
@return Returns the total length of wasted timber.
*/
public static float waste()
{

return totalWasted;
}

}

The second class Example_6 is used to test the constructor and methods of the Log class.
The algorithm for this class may be stated as follows.

1. create a window object—screen
2. create a log object—first log
3. display the number of pieces cut from the first log
4. create a log object—second log
5. display the number of pieces cut from the second log
6. create a log object—third log
7. display the number of pieces cut from the third log
8. display the total number of logs cut
9. display the total waste wood

From the algorithm it is possible to state the dependencies that the class Example_6 will have
on other classes. The class depends upon the existence of the Window class and Log class as
illustrated in Figure 3.10.

Example_6 Log

Window

Figure 3.10 UML representation of dependencies

// program to demonstrate using the Log class

import avi.*;

class Example_6
{

public static void main(String[] args)
{

Case Study: Cutting Logs 123

Window screen = new
Window("Example_6.java","bold","blue",24);
screen.showWindow();

Log firstLog = new Log(36.0f, 17.0f);
screen.write("Number of pieces cut from the first log is "+

firstLog.cut()+"\n");
Log secondLog = new Log(58.5f, 19.0f);
screen.write("Number of pieces cut from the second log is "+

secondLog.cut()+"\n");
Log thirdLog = new Log(42.75f, 12.0f);
screen.write("Number of pieces cut from the third log is "+

thirdLog.cut()+"\n");

screen.write("Total number of logs cut "+Log.totalCut()+"\n");
screen.write("Total waste wood "+Log.waste()+"\n");

}
}

A screen shot of the results of program Example_6 as it is running follows.

124 Chapter 3 Object-Oriented Programming

3.8 The AVI Package Revisited

Before we proceed with another example, it is worth taking time out to explain
about three more classes from the avi package. These classes are the Audio,
FilmStrip, and Timer classes.

One feature of the Audio and FilmStrip classes is they both use arrays in
their constructors. You already know how to initialize the array args using com-
mand-line string data; however, it is also possible to initialize arrays other than
args with string data at the point of declaration of the array.

For example, if we wanted to declare an array named filename and store
just the one name of a sound file in the first cell (indexed as 0), then we would
code:

String[] filename = {"funky.wav"};

The representation of the data in memory is depicted in Figure 3.11. Remember
an array is an object. Therefore, it is stored by reference and not by value—hence
the arrow from the memory location filename to the first (and only) cell of the
array. However, a string is also an object, and again is stored by reference—
hence the arrow from the only cell (indexed 0) to the memory containing the
string representation of the name of the file.

If we wanted to declare another array named sounds and store the names of
seven sound files in the cells of the array indexed from 0 through to 6, respec-
tively, then we would code:

String[] sounds = {"chord0.wav","chord1.wav","chord2.wav","chord3.wav",
"chord4.wav","chord5.wav","chord6.wav"};

Return to the DecorateARoom class you created earlier in the
chapter.

(1) Modify the class to contain static variables to store the total number of rolls
of wallpaper, and the total number of cans of paint required to decorate a
number of rooms in a house.

(2) Create class methods to return the total number of rolls of wallpaper and the
total number of cans of paint.

(3) Invent suitable test data and desk check all the methods of the
DecorateARoom class.

(4) Write a new driver program that instantiates several room objects and test
every method in the modified DecorateARoom class.

NOW DO THIS

3.8 The AVI Package Revisited 125

Once again, the array sounds is an object and is stored by reference—hence
the arrow from the memory location sounds to cell 0 of the array (see Figure
3.12). Notice that the consecutive cells, indexed 0 through 6, of the array all
contain references to the string representation of the name of each sound file.

The Audio Class
The Audio class contains the following constructor and instance methods:

public class Audio
{

public Audio(Window parent, String[] filenames);

public void playSound(int index);
public static void beep(WindowPane parent);

}

funky.wav

filename

0

Figure 3.11 Array filename

sounds

chord0.wav
0

chord1.wav1

chord2.wav2

chord3.wav3

chord4.wav4

chord5.wav5

chord6.wav6

Figure 3.12 Array sounds

126 Chapter 3 Object-Oriented Programming

To create an Audio object, you must use the class constructor that requires two
items of data in the formal parameter list:

parent—a Window type that specifies the container onto which to display any
information or error messages about the sound files.

filenames—a string array containing the names of the sound files that are to
be played.

Assuming that you have already created a screen window object and a string
array filename, to create an object named output of the Audio class, the
Audio constructor would be coded as

Audio output = new Audio(screen, filename);

The sound files whose names are in the string array can then be played using the
instance method playSound. For example, if you wanted to play the sound file
stored in cell 0 of the array, code

output.playSound(0);

The following program will play a short piece of music.

// program to play a wav sound file

import avi.*;

class Example_7
{

static public void main(String[] args)
{

String[] filename = {"funky.wav"};

// create window
Window screen = new Window("Example_7.java","bold","blue",16);
screen.showWindow();
// create sound object and play sound
Audio output = new Audio(screen, filename);
output.playSound(0);
// display information
screen.write("You should hear sweet music!\n\n");
screen.write("This music is copyright-free and was "+

"published by:\n");
screen.write("Future Publishing on their CD - "+

"16th February 2000\n\n\n\n");
screen.write("WHEN THE MUSIC STOPS CLOSE THE WINDOW.");

}
}

3.8 The AVI Package Revisited 127

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_7.java date: 3/11/2000 time: 1:14:55

===

< memo contained Sound file(s) are loading, there will be a short pause. >
< audio file funky.wav played >
You should hear sweet music!

This music is copyright-free and was published by:
Future Publishing on their CD - 16th February 2000

WHEN THE MUSIC STOPS CLOSE THE WINDOW.

Only wav and au format audio files can be successfully played using the Audio class.
All wav-formatted files follow the RIFF (Resource Information File Format) specification. The

standard Windows PCM-waveform contains PCM-coded data, which is pure uncompressed
pulse code modulation-formatted data. The wav-formatted files tend to eat up your hard drive if
you are a real sound bug. This format allows 16-bit stereo samples up to 44.1 KHz.

The most common use for the au file format is for compressing 16-bit data to 8-bit data; there-
fore, au files tend to consume less hard drive space. The quality cannot approach that of wav files.

1i

(1) Either download from the Internet a copyright-free sound clip, or create your
own sound clip on your computer. If you want to create your own sound clip
and you are using a Microsoft Windows environment, provided your computer
has a sound card, connect a microphone to the card and start recording.

(2) Make appropriate modifications to Example_7 to play your sound clip and
change the text on the screen to inform of the sound being played.

NOW DO THIS

Since program Example_7 plays music, there is little point in displaying a
screen shot. However, the contents of the log file will show you what was dis-
played during the running of the program.

128 Chapter 3 Object-Oriented Programming

The Timer Class
The Timer class contains the following class or static methods:

public class Timer
{

public static void delay(int seconds);
public static int getHour();
public static int getMinute();
public static int getSecond();
public static String getTime();
public static String getDate();

}

This class is important to the avi package since it offers a delay class method
that allows a pause between playing sounds or showing pictures. Since the
method is static, you do not use an object to invoke the method. Instead it is
called directly, for example by Timer.delay(5), if you require a delay of five
seconds.

Other static methods in this class will allow you to get the current hour,
minute, and second from the computer’s clock—these are getHour(),
getMinute(), and getSecond(), respectively. Should you want to get the cur-
rent time of day, then use getTime(). This method returns a string giving the
time in hours, minutes, and seconds.

The final static method, getDate(), returns the current date as a string of
characters.

The following program shows how to play a succession of sounds, each with
a delay between the time of the sound starting to play. Notice that a static
class method is used as a helper method for playing the music. The filenames
array containing the names of the audio files is illustrated in Figure 3.12.

// program to demonstrate the Timer class and playing sounds
// one after another

import avi.*;

class Example_8
{

static private void music(Audio output, int index)
{

final int DURATION = 3;
output.playSound(index);
Timer.delay(DURATION);

3.8 The AVI Package Revisited 129

}

static public void main(String[] args)
{

String[] filenames = {"chord0.wav","chord1.wav","chord2.wav",
"chord3.wav","chord4.wav","chord5.wav"};

// create window
Window screen = new Window("Example_8.java","bold","blue",16);
screen.showWindow();

// create sound object and play sound
Audio output = new Audio(screen, filenames);

// display information
screen.write("These sounds are copyright-free and "+

"were published by:\n");
screen.write("Future Publishing on their CD - "+

"16th February 2000\n\n\n\n");

// play music
music(output,0);
music(output,1);
music(output,2);
music(output,3);
music(output,4);
music(output,5);

screen.write("WHEN THE SOUNDS STOP CLOSE THE WINDOW.");
}

}

The following LOG_FILE was created during the execution of the program.

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_8.java date: 3/11/2000 time: 1:19:5

===

< memo contained Sound file(s) are loading, there will be a short pause. >
These sounds are copyright-free and were published by:
Future Publishing on their CD - 16th February 2000

130 Chapter 3 Object-Oriented Programming

The FilmStrip Class
This class is used to output JPEG, GIF, or animated GIF images onto the
screen. The class contains the following constructor and methods:

public class FilmStrip
{

public FilmStrip(Window parent,
String[] filenames,
int widthOfFrame,
int heightOfFrame);

public void showFilmStrip();
public void hideFilmStrip();
public void showFrame(int frame);
public void showFrames(int[] frames);
public void clearImages();

}

To create a FilmStrip object you must first use the class constructor. Notice
that the constructor requires four data items in the formal parameter list. The
arguments that you supply can be literal constants or variables.

parent—a Window type that specifies the container onto which to place the
picture or pictures.

< audio file chord0.wav played >
< audio file chord1.wav played >
< audio file chord2.wav played >
< audio file chord3.wav played >
< audio file chord4.wav played >
< audio file chord5.wav played >
WHEN THE SOUNDS STOP CLOSE THE WINDOW.

(1) Either download from the Internet copyright-free sound clips, or create your
own sound clips on your computer.

(2) Modify Example_8 to play a number of sounds of your choice in succession
allowing a suitable delay between clips.

NOW DO THIS

3.8 The AVI Package Revisited 131

The image files that can be successfully shown with the FilmStrip class are jpg and gif
(including animated gif) files only.

JPEG is an acronym for Joint Photographic Experts Group. This committee works on the
storage and transmission of still images. Notice that JPEG files have the suffix jpg. GIF is an
acronym for the graphics image format developed by CompuServe Inc. It is designed for efficient
online transmission of color images.

1i

cities

NewYork.jpg
0

Paris.jpg1

Venice.jpg2

Figure 3.13 Array cities

filenames—a string array containing the names of the image files that are to
be output.

widthOfFrame and heightOfFrame—the width and height, respectively, of
the image, in pixels.

Figure 3.13 illustrates how the strings defined by the following declaration are
stored in the array cities.

String[] cities = {"NewYork.jpg","Paris.jpg","Venice.jpg"};

Assuming that a screen object has already been created, it is possible to create a
FilmStrip object by coding:

FilmStrip capitals = new FilmStrip(screen, cities, IMAGE_WIDTH, IMAGE_HEIGHT);

All the images represented by the three filenames in the array cities can be
displayed as a film strip by coding: capitals.showFilmStrip().

132 Chapter 3 Object-Oriented Programming

chosenCities

0

1

0

2

Figure 3.14 An array of integers

You may show an individual frame from the film strip by specifying the
index to the array cities, where the name of the file is to be shown is stored. For
example, the code capitals.showFrame(1) will output the image of Paris.

Up to now you have only created an array of strings, for example, the array
cities depicted in Figure 3.13. However, an array can store primitive data
types such as integers. Therefore, it is possible to declare and initialize an array
of integers as follows:

int[] chosenCities = {0,2};

Figure 3.14 illustrates the creation and storage of this integer array containing
the values 0 and 2 at cells 0 and 1, respectively.

To show a selection of frames from the film strip you must first initialize an
integer array with the indexed positions of the selected images from the cities
array. For example, if you wanted to show the images for New York and Venice
only, then you must first create an array of indices that correspond to the posi-
tions of the filenames of these images in the cities array.

int[] chosenCities = {0,2};

You may show the images for New York and Venice by coding:

capitals.showFrames(chosenCities);

All of the images may be cleared from the screen by using the instance method
clearImages().

The film strip may be temporarily hidden from view by using the method
hideFilmStrip(). The film strip may be brought back into view by the
method showFilmStrip().

The following program illustrates the methods described for the FilmStrip
class.

3.8 The AVI Package Revisited 133

// program to display images

import avi.*;

class Example_9
{

public static void main(String[] args)
{

// store the names of the three image files
String[] cities = {"NewYork.jpg","Paris.jpg","Venice.jpg"};

// create a Window object screen
Window screen = new Window("Example_9.java");
screen.showWindow();

// declare size of image
final int IMAGE_WIDTH = screen.getWidth()/5;
final int IMAGE_HEIGHT = (int)((float)IMAGE_WIDTH * 0.667);

// create a film strip object containing the three images
// found in the files
FilmStrip capitals = new
FilmStrip(screen,cities,IMAGE_WIDTH,IMAGE_HEIGHT);
screen.write("image files are\ncopyright "+

"(c) 2000 Barry Holmes");

// show the film strip on the screen for 5 seconds
capitals.showFilmStrip();
Timer.delay(5);
capitals.clearImages();

// show only Paris for 5 seconds from the filmstrip
capitals.showFrame(1);
Timer.delay(5);
capitals.clearImages();

// show both NewYork and Venice from the film strip
int[] chosenCities = {0,2};
capitals.showFrames(chosenCities);
Timer.delay(5);

// destroy window and exit
screen.closeWindowAndExit();

}
}

134 Chapter 3 Object-Oriented Programming

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_9.java date: 3/11/2000 time: 1:25:24

===

< memo contained Image file(s) are loading, there will be a short pause. >
image files are
copyright (c) 2000 Barry Holmes< image file NewYork.jpg shown >
< image file Paris.jpg shown >
< image file Venice.jpg shown >
< image file Paris.jpg shown >
< image file NewYork.jpg shown >
< image file Paris.jpg shown >

The following screen shot illustrates the appearance of the three images on the
screen. Only by running the program will you see how the remaining images
appear at set times on the screen.

The log file for the program Example_9 follows.

Case Study: A Simulation of Rolling a Die 135

(1) Either download from the Internet a number of copyright-free images, or digi-
tize your own images to create image files in either a JPEG or GIF format.

(2) Modify Example_9 to show a series of single images on the screen in suc-
cession with a 5 second delay between each image changing.

NOW DO THIS

CASE STUDY

A Simulation of Rolling a Die
Statement of the Problem. Write a program to simulate rolling a die (singular of dice). Play the
sound of the die being rolled, use the value of the die to display an image of the die, and
announce this value.

Unless a die is biased (loaded) how do we simulate any value on the face of a die appearing
at random? The answer is to use a random-number generator from the class Random, found in
the Java package util (utilities) to simulate the occurrence of a digit in the range 1 through 6.
An object of type random is instantiated using:

Random value = new Random();

The instance method nextInt() returns an integer random number that lies in the range of all
integer numbers. Therefore, value.nextInt() will return a pseudo-random integer anywhere
in the permissible range of integers, including negative values as well as positive values. To
change the random number into a number between 1 and 6 (the values on the faces of the die),
use the following expression:

Math.abs(value.nextInt() % NUMBER_OF_SIDES) + 1;

By dividing the random number by the constant NUMBER_OF_SIDES (the six sides of the die)
and finding the remainder, you will always get a number in the range 0 through 5. However, this
number, apart from zero, could be either positive or negative. To ensure that the number
returned is positive, use the abs class method found in the Java Math class. Since we are
attempting to simulate a number in the range 1 through 6, it is then necessary to add 1 to this
result.

Identification of Classes and Methods
If we analyze the English in the problem, then the following nouns all represent candidate
classes.

136 Chapter 3 Object-Oriented Programming

Write a program to simulate rolling a die (singular of dice). Play the sound of the die being
rolled, use the value of the die to display an image of the die, and announce this value.

The likely candidate classes are program, die, sound, and image. The noun value represents
an attribute of the die (a value in the range 1 to 6). From this analysis, Die and program
(Example_10) are the most viable classes. The Audio class will provide for the class sound,
and the FilmStrip class will provide for the class image.

If we analyze the English in the problem, then the following verbs all represent candidate
methods.

Write a program to simulate rolling a die. Play the sound of the die being rolled, use the
value of the die to display an image of the die, and announce this value.

Remember the verbs are an indication of the methods of a class. The only viable method
of the class Die is rolled, or in this example rollDie. The verbs play and announce are taken
care of by the instance method playSound in the class Audio; the verb to display an image is
taken care of by the instance method showFrame in the class FilmStrip.

Figure 3.15 illustrates the Die and Example_10 classes.

Algorithm Development
There is just one instance variable in the class Die, and that is the object value representing
a stream of random numbers. The purpose of the constructor is to instantiate the random-
number object.

class Die
{

// instance variable
private Random value;

Example_10 Die

 +main +Die
 +rollDie

 -value

Figure 3.15 UML class diagrams

Case Study: A Simulation of Rolling a Die 137

public Die()
{

value = new Random();
}

.

.
}

The only method of this class is rollDie, which returns a random number in the range 1
through 6.

public int rollDie()
{

return Math.abs(value.nextInt() % NUMBER_OF_SIDES) + 1;
}

The class Die is dependent upon the class Random, as illustrated in Figure 3.16.

Testing
Test data. The nextInt() method in the Random class will return an integer within the
range of all integers represented in Java. If this integer had the value �234789, say, then the
value for the face of the die is calculated as follows.

-234789 % 6 = -3 (remainder after division by 6)
abs(-3) =3
3 + 1 = 4

Die Random

Math

Figure 3.16 UML dependency diagram

138 Chapter 3 Object-Oriented Programming

Hence, the value returned by the instance method rollDie() is 4.
A complete listing of the class Die follows.

import java.util.Random;

public class Die
{

// class constant
static final int NUMBER_OF_SIDES = 6;

// instance variable
private Random value;

// constructor
/**
The Die class generates a stream of pseudo random numbers on
demand to represent an order of each face of the die appearing
uppermost.
*/
public Die()
{

value = new Random();
}

// instance method
/**
The method rollDie simulates the rolling of a die.
@return An integer value in the range 1..6 that represents a
single face of the die.
*/
public int rollDie()
{

return Math.abs(value.nextInt() % NUMBER_OF_SIDES) + 1;
}

}

The name of the sound file of the die being rolled is stored in the first cell (index 0) of the
array sounds, illustrated in Figure 3.17. Hence the instance method playSound(0) will play
the sound file "rollDie.wav".

From the test data, the simulated value of the face of the die was 4. This is used as an
index to the array sounds to select a filename to announce the value scored. Hence the

Case Study: A Simulation of Rolling a Die 139

instance method playSound(4) will play the sound file "four.wav". In this example, 4
would index the fifth cell (remember an array is indexed from 0), which contains the file-
name "four.wav". See Figure 3.17 for clarification.

The filename of the image of each face of the die is stored in the array dieSides. Cell 1
(indexed by 0) deliberately contains an empty string, so that cell 2 (indexed by 1) will contain
the image file for face 1 of the die, cell 3 (indexed by 2) will contain the image file for face 2
of the die, and so on. Inclusion of an empty string in the first cell simplifies access to the cor-
rect image file since the value returned by the instance method throwDie() is used to access
the dieSides array. The instance method showFrame(value) will display the image whose
filename is "die4.jpg" when value is 4. See Figure 3.18 for further clarification.

The algorithm for class Example_10 follows.

1. create window object—screen
2. create filmstrip object—faces
3. create audio object—output
4. create die object—gamble
5. play sound of die being rolled

sounds

rollDie.wav
0

one.wav1

two.wav2

three.wav3

four.wav4

five.wav5

six.wav6

Figure 3.17 Array sounds used in the case study

140 Chapter 3 Object-Oriented Programming

6. delay for 1 second
7. show face of die
8. announce the score on the face of the die
9. delay for 5 seconds

10. close window object and exit

From the algorithm it is possible to define the classes on which Example_10 is
dependent (see Figure 3.19).

A completed listing of the class Example_10 follows. The purpose of this class is to
simulate the rolling of a die using the Die, WindowPane, Audio, FilmStrip, and Timer
classes.

dieSides

(empty)
0

die1.jpg1

2

3

4

5

6

die2.jpg

die3.jpg

die4.jpg

die5.jpg

die6.jpg

Figure 3.18 Array dieSides used in the case study

Case Study: A Simulation of Rolling a Die 141

// program to simulate rolling a die

import avi.*;
import Die.*;

class Example_10
{

public static void main(String[] args)
{

// store the filenames of the images that represent the
// six faces of a die
String[] dieSides = {"die1.jpg","die2.jpg","die3.jpg",

"die4.jpg","die5.jpg","die6.jpg"};
// store the filenames of the sounds for rolling a die
// and announcing the score

Example_10 Die

Window

FilmStrip

Audio

Timer

Random

Math

Figure 3.19 UML dependency diagrams

142 Chapter 3 Object-Oriented Programming

String[] sounds = {"rollDie.wav","one.wav","two.wav",
"three.wav","four.wav","five.wav",
"six.wav"};

// create a window pane object and show the window
Window screen = new Window("Example_10.java");
screen.showWindow();

// create a filmstrip object of the six faces of a die
final int WIDTH_OF_IMAGE = screen.getWidth()/12;
FilmStrip faces = new
FilmStrip(screen,dieSides,WIDTH_OF_IMAGE, WIDTH_OF_IMAGE);

// create an audio object to play the various sounds
Audio output = new Audio(screen, sounds);

// create a die object
Die gamble = new Die();
int value = gamble.rollDie();

// play sound of die being rolled
output.playSound(0);
Timer.delay(1);

// show face of die
faces.showFrame(value-1);

// announce score on die
output.playSound(value);

// delay and then exit
Timer.delay(5);
screen.closeWindowAndExit();

}
}

A screen shot of program Example_10 being run follows, together with a listing of the
log file.

Case Study: A Simulation of Rolling a Die 143

We should mention that naming a class Example_10 as we did here is a good idea only in
the context of a textbook. It is usually recommended to use as descriptive a name as possible.
For example, we could have named the above class VirtualDie, to nicely differentiate from
the other class we defined in this section, Die.

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_10.java date: 3/11/2000 time: 1:29:58

===

< memo contained Image file(s) are loading, there will be a short pause. >
< memo contained Sound file(s) are loading, there will be a short pause. >
< audio file rollDie.wav played >
< image file die5.jpg shown >
< audio file five.wav played >

144 Chapter 3 Object-Oriented Programming

S U M M A R Y

■ Encapsulation is the grouping together of data and a set of methods to per-
form actions on data of that class type. An encapsulated group is called an
abstract data type.

■ A constructor is used to initialize an object with data. Every instance of a
class is an object of the class. Every object has its own data set.

■ A constructor is used to initialize the instance variables of a class.

■ For each invocation of a constructor, a new object with its own set of
instance variables is instantiated.

■ Instance methods and class methods are constructed using the same tech-
niques for returning a value and passing parameters.

■ Modifiers are used to alter the behavior of a class, method, or variable. A
public class is visible anywhere. A public method or variable is visible any-
where its class is visible. A private method or variable is visible only within
its own class. Classes may not be private.

■ The static modifier is reserved for methods that cannot be invoked by an
object; these are known as class methods. The static modifier may also be
used with variables that do not belong to a single object.

■ A method should be written as a self-contained unit that represents a single
programmed activity.

■ When calling a method, the list of literals or variables, enclosed in parenthe-
ses after the method name, is known as the actual parameter list.

■ When declaring a method, the list of declarations, enclosed in parentheses
after the method name, is known as the formal parameter list.

■ The number of actual parameters must be the same as the number of corre-
sponding formal parameters.

■ The order of the actual parameters and the formal parameters must be the
same.

■ The data types of the corresponding actual parameters and formal parame-
ters must be the same.

■ The names of the identifiers in the actual parameter list and the formal
parameter list can be the same or different.

Summary 145

■ After executing a method, the computer will return to the next executable
statement after the method call.

■ The computer will return to the calling method by either executing a return
statement or by reaching the physical end of the method.

■ The return statement may assign a value to the method and exit from the
method.

■ A method may contain parameters and local variables.

■ Constants and variables may have either block scope or class scope.

■ When an object has gone out of scope, the automatic garbage collector will
release the memory occupied by an object’s data to the heap.

■ In designing object-oriented programs, it is important to analyze classes at
an early stage in the development of the software. The analysis of classes
can be divided into the activities of: identifying classes, identifying class data
and methods, and finding relationships and dependencies between classes.

■ A Java program is constructed from a number of classes. A class may con-
tain any combination of data declarations, constructors, and class and
instance methods. The implementation of methods within a class may reuse
the methods defined in the Java API.

■ To reuse any method defined by the Java API, it is necessary to import the
appropriate class. A class can be imported by specifically stating the name
of the package and class in an import statement. Alternatively, to make all
the classes of a package available in a program, use only the package name
followed by the wildcard symbol *.

■ Software development consists of the stages of analysis, design, program-
ming, and maintenance. Because software development evolves through the
experience gained at each stage, it is possible to go back to any of the
stages and modify the solution to the problem.

■ Programming consists of analyzing the problem, designing an algorithm, cod-
ing the algorithm into a computer program, testing the computer program,
and supplying sufficient documentation so that the program can easily be
understood and modified by others.

■ As a means of checking program accuracy, a program should be run for the
first time with the same test data used during the desk check.

146 Chapter 3 Object-Oriented Programming

Review Questions
True or False

1. Data abstraction permits programmers to access data using their own methods.

2. Every method has a formal parameter list.

3. A class may be defined as being private.

4. A private method or variable is only visible within its own class.

5. A method may have many return statements.

6. A method may have no return statements.

7. A static identifier has life for the duration of the program in which it is declared.

8. An instance variable is static.

9. A Java program may be constructed from several classes.

10. A class may contain declarations and methods.

11. Pseudocode is written in Java.

12. A desk check is used after the program has been written.

Short Answer

13. What is an abstract data type?

14. Why should instance methods be defined as public?

15. Comment upon how instance methods and class methods are invoked.

16. State the names of at least two predefined classes that contain class methods.

17. What is the syntax of a programmer-defined method?

18. Does every method return a value?

19. What is a formal parameter list?

20. What is an actual parameter list?

21. Where does the computer return to upon exiting a method?

22. What is the scope of an identifier?

23. What is a block?

24. Distinguish between block scope and class scope.

25. What is the lifetime of an identifier?

26. What is meant by garbage collection?

Exercises 147

27. What is a constructor?

28. What is the purpose of the import list?

29. Name the four main activities associated with the software development life cycle.

30. List the activities involved in programming.

31. What is a desk check?

32. What is peer-group evaluation?

33. What is pseudocode?

34. At what stages in programming would test data be used?

Exercises
35. Desk check the following code. What is output from the main method?

public static void main(String[] args)
{

screen.write(sum());
}

static int sum()
{

int A = 12;
int B = 13;

return A+B;
}

36. Desk check the following code. What is output from the method display?

public static void main(String[] args)
{

display("Hello World");
}

static void display(String message)
{

screen.write(message+"\n");
}

37. Desk check the following code. What is output from method display?

public static void main(String[] args)
{

display(25,13);
display(12,17);

148 Chapter 3 Object-Oriented Programming

}

static void display(int A, int B)
{

int C = A+B;

screen.write(C+"\n");
}

38. Desk check the following code. What is output from the methods valueOnly and
main?

public static void main(String[] args)
{

int A=41;
int B=29;

valueOnly(A,B);
screen.write("A=" + A + " B=" + B+"\n");

}

static void valueOnly(int A, int B)
{

A--;
B++;
screen.write("A=" + A + " B=" + B+"\n");

}

39. State the errors in the following method calls and method signatures.

Class method call Class method signature

(a) alpha; static void alpha();

(b) beta(A,B,C); static void beta();

(c) delta(18,'*'); static void delta(char X, int Y);

(d) gamma(X,Y); static void gamma(int[] data);

40. What is the error in the following method?

static void alpha(int number)
{

return 2*number;
}

Exercises 149

41. In the following code, what is the value of global inside the method overRide?

class example
{

static final int global = 29; // constant with class scope

static void overRide()
{

int global = 56; // variable with block scope
.
.

}

42. Desk check the following program and determine what values are output for x.

class StaticTest
{

private static int x = 0;
public StaticTest(){}
public void increaseX() {x++;}

public void printX()
{screen.write("value of x is " + x+"\n");}

}

class Question_42
{

public static void main(String[] args)
{

StaticTest objectA = new StaticTest();
StaticTest objectB = new StaticTest();

objectA.printX();
objectA.increaseX();
objectA.printX();
objectB.increaseX();
objectB.printX();

}
}

43. If the code in Question (42) is changed by deleting the modifier static in the declara-
tion of the variable x, desk check the code again and determine what values of x are out-
put.

150 Chapter 3 Object-Oriented Programming

Programming Problems
44. Modify class Example_5 to input the parameters for a swimming pool using

(a) command-line parameters

(b) dialog boxes

45. Modify class Example_7 to input the name of a sound file of your choice as a command-
line parameter and then play the audio file.

46. Modify class Example_10 to roll two dice, display each respective jpeg image and
announce the score on each die.

47. Create a class MinimumNotes to input an amount of money as a whole number, for
example $157, and display an analysis of the minimum number of $20, $10, $5, and $1
bills that make up this amount. Test the class.

48. We all keep loose change in our pockets. Write a class MoneyBags to calculate the total
value of your loose change. You will need to input the number of half dollars, quarters,
dimes, nickels, and pennies and then display the total value of the coinage in dollars and
cents. Test the class.

49. The interest payable on a loan is calculated according to the following equation:

Write a class SimpleInterest to input the principal amount borrowed, the rate of
interest as a percentage, and the time of the loan in days. Calculate and output the value
of the interest. Test the class.

50. Write a class PersonalDetails to input your name, height (in inches), and weight (in
pounds); convert the height to centimeters and weight to kilograms and display the fol-
lowing results. Note: 1 inch = 2.54 centimeters and 1 pound = 0.4546 kilograms. Test
the class.

Personal Details

Name Henry Smith

Height 180 cm

Weight 75 kg

interest principal
rate time

365
= ⋅ ⋅

100

Programming Problems 151

51. A person is paid a gross weekly wage based upon the number of hours worked per week
and the hourly rate of pay. Calculate the net pay for an employee after the following
deductions:

Federal income tax 15% of gross pay

Social security tax 6.2% of gross pay

Payroll savings 3% of gross pay

Retirement pension 8.5% of gross pay

Health insurance $5.75 per employee

Write a class Deductions to input the hourly rate of pay and the number of hours
worked in a week; calculate the deductions and supply enough information to display
the pay check. Test the class.

52. An estimate for framing a photograph is based upon the following information.

The outside edge of the wooden frame is 6 inches longer and 6 inches wider than the
photograph. The cost of the wood to make the frame is $2.50 per foot.

Two backing cards are required to be mounted with the photograph. Each card is 5.5
inches longer and 5.5 inches wider than the photograph. The cost of the backing card
is $1.50 per square foot.

The photograph is to be protected under glass. The size of the glass is the same as a
backing card. The cost of the glass is $5.50 per square foot.

Write a class CostOfFraming and computerize the process of supplying a fully item-
ized quotation for framing a photograph.

53. Write a class MyHolidays that will store images and sounds from a memorable holiday.
Write a program to create a holiday object that shows images from your holiday, plays
the appropriate sound to accompany the image, and writes information on the screen
about the occasion.

This page intentionally left blank

C H A P T E R 4

Selection
All the programs in the previous chapters were constructed from a
sequence of statements. Each time a program was run, the computer
would execute the same statements in the same order. A natural
question is: How do you write a program that will allow different state-
ments to be executed under different conditions?

This chapter introduces the techniques of coding conditions and branching on
the result of a condition to alternative statements in a program. By the end of the
chapter you should have an understanding of the following topics.

■ The avi package components that allow for graphical selection

■ The syntax and use of the two-way branch statement if..else

■ The construction and evaluation of a conditional expression

■ The use of nested, or embedded, selection statements

■ The use of logical operators in the construction of conditional expressions

■ The boolean data type

■ The syntax and use of the multiway branch statement switch

■ Wrapper classes

■ The this object

■ Error detection

153

154 Chapter 4 Selection

Figure 4.1 A Slider object from the avi package

4.1 More AVI classes

Before getting into the main topics of this chapter, we will introduce a few more
classes of the avi.

The Slider Class
A slider object is illustrated in Figure 4.1. The figure shows that the slider bar
has been moved to a position that corresponds to an input value of 25 degrees
Celsius. Sliders are used for the input of integer values. The advantage of a slider
over a dialog box is that you can guarantee that a user will input data only
within predefined limits. Erroneous data cannot be input since the user is con-
strained to move the slider between preset limits.

The Slider class contains the following constructor and public instance
methods:

public class Slider
{

public Slider(Window parent,
String prompt,
int minValue,
int maxValue,
int increment);

public void showSlider();
public int getValue();

}

To create a Slider object you must use the class constructor that requires five
items of data in the formal parameter list:

parent—a Window type that specifies the container on which to display a slider
object.

prompt—a description of the quantities being represented; it will be written in
the slider box as a prompt.

4.1 More AVI classes 155

minValue, maxValue, and increment are the smallest integer value, largest
integer value, and smallest graduation that the slider can recognize, respectively.

Assuming that you have already created a screen window object, then the
slider object shown in Figure 4.1 can be created using the constructor as:

Slider input = new Slider(screen,"degrees C?",0,100,1);

The slider is displayed on the screen using the instance method showSlider,
for example:

input.showSlider();

After using the mouse-pointer to move the slider to any position, the user closes
the slider’s own window to indicate that input is complete. The input value is
read by using another instance method, getValue(), for example:

celsius = input.getValue();

The following program will input, using a slider, a temperature in degrees
Celsius, convert the temperature to degrees Fahrenheit, and write the result to
the screen.

// program to demonstrate the use of a slider to input a temperature
// in degrees Celsius and convert the value to degrees Fahrenheit

import avi.*;

public class Example_1
{

public static void main(String[] args)
{

int celsius;

// create and show window
Window screen = new Window("Example_1.java");
screen.showWindow();

// create and show slider
Slider inputTemperature = new
Slider(screen,"degrees C?",0,100,1);
inputTemperature.showSlider();

// input temperature in degrees celsius
celsius = inputTemperature.getValue();

156 Chapter 4 Selection

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_1.java date: 3/12/2000 time: 6:42:56

===

At the prompt: degrees C?, you selected [25] from the slider.

Temperature input was 25 C; equivalent temperature is 77.0 F

Using Example_1 for reference, write a program to perform the
following.

(1) Create a slider object to input a number of dollars in the range $10 .. $1000
in increments of $10.

(2) Taking the input from the slider, calculate and display the amount of money
in a foreign currency of your choice.

NOW DO THIS

// convert temperature to degrees Fahrenheit and display
// the value on the screen
screen.write("Temperature input was "+celsius+" C; ");
screen.write("equivalent temperature is "+

((celsius)*(9.0f/5.0f)+32)+" F\n");
}

}

Since the screen output of this program changes dynamically as the program is
executing, it is hard to capture the feel of it in a figure. We suggest while you
are working through the book that you compile and execute all examples as
they are encountered, to see how they run. The source code is included on the
CD that was bundled with the book, and is also available on the book’s Web
site. To show the results of a program in the book, we will often show the con-
tents of an example’s log file, which captures everything that occurred during
the run of the program. The contents of the log file after running the
Example_1 program follows.

The RadioButtons Class
A group of radio buttons may be used for the input of just one item of data
selected from many items. The mouse-pointer is used to depress a button. The
key feature of radio buttons is that only one button may indicate a choice. If you

4.1 More AVI classes 157

change your mind about a selection, then simply select a different item and the
button on the original selection is cancelled.

Figure 4.2 illustrates a radio buttons object used to indicate a choice of
names of birds. From Figure 4.2 it is clear that the choice is for a Barn Owl.
When the final selection has been made, the radio button’s window is closed.

The RadioButtons class contains the following constructor and public
instance methods.

public class RadioButtons
{

public RadioButtons(Window parent,
String prompt,
String[] itemsInList);

public void showRadioButtons();
public void getNameOfButton();
public int getPositionOfButton();

}

Figure 4.2 A RadioButtons object from the avi package

158 Chapter 4 Selection

To create a radio-buttons object you must use the class constructor that requires
three items of data in the formal parameter list:

parent—a Window type that specifies the container on which to display a
radio-buttons object.

prompt—a string that is used as a cue to inform the user of the nature of the
selection. For example, in Figure 4.2 the cue is "Name of bird?".

itemsInList—a string array containing a list of all the names of the radio
buttons.

Assuming that you have already created a screen window object, then the
RadioButtons object shown in Figure 4.2 can be created with the constructor as:

RadioButtons input = new RadioButtons(screen,"Name of bird?",names);

where names is a String array.

String[] names = {"Nightingale","Barn Owl","Skylark","Wood Pigeon",
"Song Thrush","Blackbird","Robin"};

The radio buttons are displayed on the screen using the instance method
showRadioButtons, as, for example:

input.showRadioButtons();

After using the mouse-pointer to select a button, the radio button’s own window
is closed to indicate that data has been input. The name of the selected radio
button may be chosen using the instance method getNameOfButton, for
example:

String nameOfBird = input.getNameOfButton();

The position of the selected radio button may be chosen using the instance
method getPositionOfButton, for example:

int position = input.getPositionOfButton();

The position represents the index to the array names of button labels.

4.1 More AVI classes 159

In the following program, radio buttons are used to offer a choice of bird
songs. The names of the birds in the array names corresponds to the names of
the bird songs in the array songs. Therefore, if a Barn Owl is chosen, the posi-
tion of the button is returned as 1 (note that an array index always starts at 0)
and this is used to index the songs array to select the correct sound file.

// program to demonstrate the use of radio buttons for the selection
// of just one item of text from a list of items, then use the position
// of the selected button to select an audio file

import avi.*;

class Example_2
{

public static void main(String[] args)
{

// store names of files of birdsong in an array
String[] songs = {"Nightingale.wav","Barn Owl.wav",

"Skylark.wav","Wood Pigeon.wav",
"Song Thrush.wav","Blackbird.wav",
"Robin.wav"};

// store names of birds in an array
String[] names = {"Nightingale","Barn Owl","Skylark",

"Wood Pigeon","Song Thrush","Blackbird",
"Robin"};

// create and show window pane
Window screen = new Window("Example_2.java");
screen.showWindow();

// create sound object
Audio birdSong = new Audio(screen, songs);

// create and show radio buttons
RadioButtons input = new
RadioButtons(screen, "Name of bird?", names);
input.showRadioButtons();

// select from radio buttons list
int position = input.getPositionOfButton();

// play sound of selected bird
birdSong.playSound(position);

160 Chapter 4 Selection

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_2.java date: 3/11/2000 time: 6:53:32

===

< memo contained Sound file(s) are loading, there will be a short pause. >
At the prompt: Name of bird?, you selected [Barn Owl] from the radio but-
tons.

< audio file Barn Owl.wav played >

You should be listening to the song of a Barn Owl.

Sound files edited and digitized by Barry Holmes.

Close the window when the bird song finishes.

Modify Example_2 as follows.

(1) Search the Internet for copyright-free images of the birds listed. Download
the images and store them in the same directory as your copy of the program
Example_2. Store the names of the image files in the same order as the
bird-song files.

(2) Create a Filmstrip object that contains the images of the birds.

(3) After the choice of bird has been made, show the image of the bird as well as
playing the song of the bird.

NOW DO THIS

// write information to the screen
screen.write("You should be listening to the song of a "+

names[position]+".\n\n\n");
screen.write("Sound files edited and digitized by Barry "+

"Holmes.\n\n\n");
screen.write("Close the window when the bird song finishes.");

}
}

The contents of the log file after running this program follows.

4.2 If..else Statement 161

Raining?
false true

Wear raincoat
and take
umbrella

Figure 4.3 Single-branch selection

4.2 If..else Statement

Consider the following problem in which you are to display radio buttons to offer
a choice of weather conditions—dry or raining. If the user selects raining, then
the program advises them what outer garments to wear before going outdoors.

The solution to the problem can be stated by the following statements writ-
ten in pseudocode.

1. create and show window object

2. create and show radio buttons

3. get name of button

4. if name of button is raining

5. advise to wear raincoat and take an umbrella

6. close window to exit

If the name of the radio button selected was raining, then the condition name of
button is raining would be true, and statement number (5) to advise on what to
wear in wet weather would be displayed on the screen. Program execution
would then continue on line (6). However, if the name of the radio button
selected was dry, then the condition name of button is raining would be false, and
statement number (5) would be bypassed by the computer, with program execu-
tion being resumed at line (6). This split in the sequential line of flow when the
condition is true is depicted by Figure 4.3.

The following program has been coded from the pseudocode and illustrates
the if Java statement that will allow for single-branch selection.

162 Chapter 4 Selection

// program to demonstrate the if statement

import avi.*;

public class Example_3
{

public static void main(String[] args)
{

String[] buttons = {"DRY","RAINING"};
String weather;

// create and show window
Window screen = new Window("Example_3.java","bold","blue",18);
screen.showWindow();

// create and show radio buttons
RadioButtons inputWeather = new
RadioButtons(screen,"Weather conditions?",buttons);
inputWeather.showRadioButtons();

// get selection from button
weather = inputWeather.getNameOfButton();

// display what to wear
if (weather.equals("RAINING"))
screen.write("It's raining outside wear your raincoat "+

"and take an umbrella.");

screen.write("\n\n\nClose the window to exit.");
}

}

The contents of the log file after running this program follows.

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_3.java date: 3/12/2000 time: 5:35:50

===

At the prompt: Weather conditions?, you selected [RAINING] from the radio
buttons.

It's raining outside wear your raincoat and take an umbrella.

Close the window to exit.

4.2 If..else Statement 163

You must use the instance methods compareTo, equals, and equalsIgnoreCase
defined in the String class, if you need to compare the values of strings.

!

SYNTAX

If statement: if (conditional-expression)
statement(s);

The syntax of the if statement follows:

where the conditional-expression will equate to either true or false. If the condi-
tional-expression is true, then the statement(s) will be executed; if the conditional
expression is false, then the statement(s) will not be executed. Afterward, the
computer will continue with the execution of the next statement after
statement(s).

Clearly the program gives no advice on what to wear when the weather is
dry. The pseudocode can be modified to take this fact into account. When the
weather is dry, we shall advise to wear a jacket.

1. create and show window object

2. create and show radio buttons

3. get name of button

4. if name of button is raining

5. advise to wear raincoat and take an umbrella

6. else

7. advise to wear a jacket

8. close window to exit

This time if the name of the radio button selected was dry, then the condition
name of button is raining would be false, and statement number (7) after the
keyword else would be executed by the computer. In either situation the
sequential flow of control of the program is resumed at statement number (8).
This split in the sequential line of flow when the condition is true or false is
depicted by Figure 4.4.

164 Chapter 4 Selection

Raining?
false true

Wear raincoat
and take
umbrella

wear
jacket

Figure 4.4 Double-branch selection

The following program has been coded from the pseudocode and illustrates
the Java statement that will allow for two-way selection.

// program to demonstrate the if..else statement

import avi.*;

public class Example_4
{

public static void main(String[] args)
{

String[] buttons = {"DRY","RAINING"};
String weather;

// create and show window pane
Window screen = new Window("Example_4.java","bold","blue",18);
screen.showWindow();

// create and show radio buttons
RadioButtons inputWeather = new
RadioButtons(screen,"Weather conditions?",buttons);

4.2 If..else Statement 165

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_4.java date: 3/12/2000 time: 5:34:15

===

At the prompt: Weather conditions?, you selected [DRY] from the radio
buttons.

The weather is dry wear your jacket.

Close the window to exit.

SYNTAX

If .. else Statement: if (conditional-expression)
statement(s)-1;

else
statement(s)-2;

inputWeather.showRadioButtons();

// get selection from radio button
weather = inputWeather.getNameOfButton();

// write what to wear
if (weather.equals("RAINING"))

screen.write("It's raining outside wear your raincoat and "+
"take an umbrella.");

else
screen.write("The weather is dry wear your jacket.");

screen.write("\n\n\nClose the window to exit.");
}

}

The contents of the log file after running this program follows.

The syntax of the if..else statement follows:

166 Chapter 4 Selection

temp<50?
false true

wear hat
and coat

temp<50?
false true

false true

wear hat,
coat and
scarf

wear jacket
and take
sunglasses

raining?

wear raincoat
and take
umbrella

Figure 4.5 Selections within selections, known as nested selections

where the conditional-expression will equate to either true or false. If the condi-
tional-expression is true, then statement(s)-1 will be executed; if the conditional
expression is false, then statement(s)-2 will be executed. After either statement
has been executed, the computer will continue with the execution of the next
statement after statement(s)-2.

4.3 Nested If Statements

The problem of what to wear can be extended to cater for temperature varia-
tions, as well as it being either raining or dry. Figure 4.5 illustrates the logic
behind the various selections.

The following observations can be made by reading Figure 4.5.

■ If it is raining and the temperature is less than 50 degrees, then you should
wear a hat and coat; else if the temperature is greater than or equal to 50
degrees, then you should wear a raincoat and take an umbrella.

■ If it is not raining and the temperature is less than 50 degrees, then you
should wear a hat, coat, and scarf; else if the temperature is greater than or
equal to 50 degrees, then you should wear a jacket and take your sunglasses.

4.3 Nested If Statements 167

The statement that follows the conditional expression after the keyword if, or
the statement that follows the keyword else, can also be an if statement.

The previous program can be modified to take these changes into account.
Notice that a slider object has been included for the input of the temperature.

// program to demonstrate the use of nested if .. else statements

import avi.*;

class Example_5
{

public static void main(String[] args)
{

String[] buttons = {"DRY", "RAINING"};
String weather;

// create and show window
Window screen = new Window("Example_5.java","bold","blue",18);
screen.showWindow();

// create and show radio buttons
RadioButtons inputWeather = new
RadioButtons(screen,"Weather conditions?",buttons);
inputWeather.showRadioButtons();

// get selected weather button
weather = inputWeather.getNameOfButton();

// create and show slider
Slider inputTemperature = new
Slider(screen,"Temp. degrees F?",40,70,1);
inputTemperature.showSlider();

// get temperature
int temperature = inputTemperature.getValue();

// write what to wear
if (weather.equals("RAINING"))
{

if (temperature < 50)
screen.write("It's cold and wet outside, "+

"wear an overcoat and hat.");
else

screen.write("The weather is warm and wet, wear "+
"a raincoat and take an umbrella.");

}

168 Chapter 4 Selection

You should adopt the habit of indenting code within an if statement. Indentation shows
which statements are associated with the conditional expression being true (after the if)

and which statements are associated with it being false (after the else). Indentation of the
statements after the else also indicates to the reader where the if statement finishes, since
the next statement after the if statement will be indented the same distance from the left-hand
margin as the keywords if and else. Indentation is ignored by the compiler.

1i

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_5.java date: 3/12/2000 time: 5:40:50

===

At the prompt: Weather conditions?, you selected [RAINING] from the radio
buttons.

At the prompt: Temp. degrees F?, you selected [50] from the slider.

The weather is warm and wet, wear a raincoat and take an umbrella.

Close the window to exit.

else
{

if (temperature < 50)
screen.write("It's cold but dry, wear a hat, "+

"coat and scarf.");
else

screen.write("The weather is just great, wear a "+
"jacket and take sunglasses");

}

screen.write("\n\n\nClose the window to exit.");
}

}

The contents of the log file after running this program follows.

In the previous two program examples, only one statement was executed
regardless of whether the conditional expression evaluated to true or false. What
if more than one statement is to be executed? The answer is to treat the group of
statements as a block by introducing braces {}.

4.3 Nested If Statements 169

For example, if a string array called instructions contains the filenames of
four different audio files:

String[] instructions = {"coldWet.wav","warmWet.wav","coldDry.wav","warmDry.wav"};

then an Audio object can be created for playing the contents of any of the four files.

Audio whatToWear = new Audio(screen, instructions);

If you wanted to announce that it is cold and wet, then you can code
whatToWear.playSound(0); however, if you wanted to announce that it is
cold but dry, then you can code whatToWear.playSound(2), and so on.

If the instructions of what to wear are spoken in addition to appearing on
the screen, the code would be modified as follows.

// write what to wear
if (weather.equals("RAINING"))
{

if (temperature < 50)
{

whatToWear.playSound(0);
screen.write("It's cold and wet outside, wear an overcoat "+

"and hat.");
}
else
{

whatToWear.playSound(1);
screen.write("The weather is warm and wet, wear a raincoat "+

"and take an umbrella.");
}

}
else
{

if (temperature < 50)
{

whatToWear.playSound(2);
screen.write("It's cold but dry, wear a hat, coat and scarf.");

}
else
{

whatToWear.playSound(3);
screen.write("The weather is just great, wear a jacket "+

"and take sunglasses");
}

}

170 Chapter 4 Selection

(1) Record your own sound files to correspond with the on-screen instructions
given in program Example_5.

(2) Modify program Example_5 to include a sound object to announce the
instructions as well as displaying them on the screen.

NOW DO THIS

Notice that the test for equality is a double equals sign ==. Be careful not to use the single
equals sign when testing for equality. Remember = is reserved for assignment.

1i

Operator Meaning

> greater than
< less than
== equal
!= not equal
>= greater than or equal
<= less than or equal
! not

Figure 4.6 Relational operators

Even if only one statement is executed in a selection statement, the use of braces
can improve the clarity of the code, even though the braces are themselves
redundant. In program Example_5 and the related example above, braces have
been included in the outer selection statement purely to improve the readability
of the code.

The relational operator < is not the only operator that can be used in a con-
ditional-expression. Figure 4.6 lists the seven relational operators that can be
used with primitive data types in a conditional-expression. See also Appendix
A, Table A.3.

Remember, if you need to compare strings, then you must use the appropri-
ate method in the String class (see previous cautionary advice box).

4.3 Nested If Statements 171

The storage of real numbers in the memory of a computer may not always be done pre-
cisely. For example, the storage of 0.33 in binary can only be an approximation to the true

value of the number. For this reason you should exercise extreme caution when comparing two
real numbers for equality. For example if f and g are both numbers of type float then instead of
coding

if (f == g)

it might be better to code

if ((Math.abs(f - g)) < epsilon)

where epsilon is an appropriately small constant, for example 0.0001.

1i

In Java, if statements can be nested to any depth; however, you should pay
particular attention to the use of indentation and the grouping of the else key-
words. In the following example, to which if statement does the single else
statement belong?

if (alpha == 3)
if (beta == 4)

screen.write("alpha 3, beta 4");
else

screen.write("alpha not 3");

The indentation suggests that the else belongs to if (alpha == 3); how-
ever, as you might guess, this is wrong. The rule in Java regarding which else
belongs to which if is simple. An else clause belongs to the nearest if state-
ment that has not already been paired with an else. The preceding example can
be rewritten taking into account the correct indentation:

if (alpha == 3)
if (beta == 4)

screen.write("alpha 3, beta 4");
else

screen.write("alpha not 3");

172 Chapter 4 Selection

If the else clause did belong to if (alpha == 3), then braces would be intro-
duced into the coding as follows:
if (alpha == 3)
{

if (beta == 4)
screen.write("alpha 3, beta 4");

}
else

screen.write("alpha not 3");

4.4 Conditional Expressions

From the discussions so far, it should be clear to you that the conditional expres-
sions can equate to one of two values, either true or false. Examples of condi-
tional expressions given so far are (reply.equals("RAINING")) and
(temperature < 50).

In a new example, a program is written to select an applicant for medical tri-
als provided the applicant is female, has blood group O, is between 18 and 40
years of age, and is between 90 and 180 pounds in weight.

The logic behind the solution to this problem can be expressed by the fol-
lowing pseudocode.

1. create and show window

2. create and show dialog box to input name of applicant

3. create and show radio buttons to input gender of applicant

4. create and show radio buttons to input blood group of applicant

5. create and show slider to input age of applicant

6. create and show slider to input weight of applicant

7. if gender is female

8. if blood group is O

9. if age is between 18 and 40

10. if weight is between 90 and 180

11. write on screen that applicant is successful

The conditions used in this logic are gender is female, blood group is O, age is
between 18 and 40, and weight is between 90 and 180. The first two conditions
may be coded as follows:

(gender.equals("FEMALE"))
(bloodGroup.equals("O"))

4.4 Conditional Expressions 173

However, if we want to test a piece of data for its validity between a range of
values, then we should use the logical operator && (AND) in the coding of the
conditions as follows:

(age >= 18 && age <= 40)
(weight >= 90 && weight <= 180)

Note that the && operator has a lower priority than the comparison opera-
tors like >=, so that the comparisons are performed first, before the logical AND.
See Appendix A, Table A-2, for a list of operator priorities.

This logic can be coded into the following program.

// program to demonstrate the use of conditional statements

import avi.*;

class Example_6
{

public static void main(String[] args)
{

String[] genderButtons = {"MALE","FEMALE"};
String[] bloodButtons = {"A","B","AB","O","not listed"};

String name, gender, bloodGroup;
int age, weight;

// create and show window pane
Window screen = new
Window("Example_6.java","bold","blue",18);
screen.showWindow();

// create and show dialog box and input name of applicant
DialogBox inputName = new DialogBox(screen,"Name?");
inputName.showDialogBox();
name = inputName.getString();

// create and show radio buttons and input gender
RadioButtons inputGender = new
RadioButtons(screen,"Gender?",genderButtons);
inputGender.showRadioButtons();
gender = inputGender.getNameOfButton();

// create and show radio buttons and input blood group
RadioButtons inputBloodGroup = new
RadioButtons(screen,"Blood Group?",bloodButtons);
inputBloodGroup.showRadioButtons();

174 Chapter 4 Selection

bloodGroup = inputBloodGroup.getNameOfButton();

// create and show slider and input age
Slider inputAge = new Slider(screen,"Age in years?",10,80,1);
inputAge.showSlider();
age = inputAge.getValue();

// create and show slider and input weight
Slider inputWeight = new
Slider(screen,"Weight in pounds?",50,250,1);
inputWeight.showSlider();
weight = inputWeight.getValue();

// analyze applicant for suitability in trial
if (gender.equals("FEMALE"))

if (bloodGroup.equals("O"))
if (age >= 18 && age <= 40)

if (weight >= 90 && weight <= 180)
screen.write(name+" your application "+

"for the medical trial "+
"was successful.");

}
}

The contents of the log file after running this program follows.

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_6.java date: 3/12/2000 time: 5:42:59

===

At the prompt: Name?, you input [Lucy Lockett] at the dialog box.

At the prompt: Gender?, you selected [FEMALE] from the radio buttons.

At the prompt: Blood Group?, you selected [O] from the radio buttons.

At the prompt: Age in years?, you selected [32] from the slider.

At the prompt: Weight in pounds?, you selected [125] from the slider.

Lucy Lockett your application for the medical trial was successful.

4.4 Conditional Expressions 175

A truth table for logical AND is given in Figure 4.7. This table tells us that the
combination of two conditions with an AND is true only if both the original con-
ditions are true.

We can now analyze the conditions listed in the program. If the gender is
female, then the computer executes the next statement to test the condition
bloodGroup.equals("O").

If (age >= 18) is condition X and (age <= 40) is condition Y, then X &&
Y can only be true if both condition X is true and condition Y is true. In other
words, both conditions (age >= 18) and (age <= 40) must be true for the
expression to be true. Therefore, if either condition X or condition Y or both
happen to be false, the complete expression given by X && Y is false.

Similarly, both conditions in the expression (weight >= 90 && weight
<= 180) must be true for the conditional expression to be true. If either one
condition or both conditions is false, then the conditional expression is false.

In the program, if the age is between 18 and 40 years, then the computer
executes the next if statement, and if the weight is between 90 and 180 pounds,
then the computer writes to the screen that the applicant was successful.

The program can be reconstructed by omitting the last three if statements
and combining all the conditions as follows:

if ((gender.equals("FEMALE")) &&
(bloodGroup.equals("O")) &&
(age >= 18 && age <= 40) &&
(weight >= 90 && weight <= 180))

screen.write(name+" your profile for the medical trial "+
"is acceptable.");

else
screen.write(name+" your application for the medical "+

"trial was not successful.");

Notice that the redesign of the code to use a single if statement allows us to
easily use a corresponding else statement to provide output even in the situa-
tion in which the applicant is not accepted.

Condition X Condition Y X && Y

false false false
false true false
true false false
true true true

Figure 4.7 Truth table for logical AND

176 Chapter 4 Selection

4.5 Else if Statements

The complexity of nested if statements can be reduced by combining condi-
tions and using logical AND. For example, the following is part of the nested
selection in Example_5.

if (buttons[position].equals("RAINING"))
{

if (temperature < 50)
screen.write("It's cold and wet outside, wear an overcoat "+

"and hat.");
else

screen.write("The weather is warm and wet, wear a "+
"raincoat and take an umbrella.");

}
else
{

if (temperature < 50)
screen.write("It's cold but dry, wear a hat, coat and scarf.");

else
screen.write("The weather is just great, wear a jacket "+

"and take sunglasses");
}

can be recoded as

if (buttons[position].equals("RAINING")) && (temperature < 50)
screen.write("It's cold and wet outside, "+

"wear an overcoat and hat.");
else if (buttons[position].equals("RAINING")) && (temperature >= 50)

screen.write("The weather is warm and wet, "+
"wear a raincoat and take an umbrella.");

else if (buttons[position].equals("DRY")) && (temperature < 50)
screen.write("It's cold but dry, wear a hat, coat and scarf.");

else
screen.write("The weather is just great, wear a jacket "+

"and take sunglasses");

An else keyword followed by an if keyword is very common in program-
ming. In fact, in many computer languages, except for Java, there is an elseif
statement. In Java we can write the else keyword, separated by a space and on
the same line as the if keyword, as if it is one keyword, elseif. It is not a single
keyword, but indentation produces a very clear multibranch structure that is
actually made of multiple two-branch if else statements.

4.6 Boolean Data Type 177

4.6 Boolean Data Type

A variable of primitive type boolean is permitted to have only one of two val-
ues, either true or false. A boolean variable is initialized by Java to be false
(see Appendix A, Table A.2).

The conditional expression in an if statement must evaluate to a boolean
value that is either true or false.

A variable may be declared as boolean and initialized at its point of declara-
tion to either true or false. This variable may be reassigned either of the
boolean values at a later stage in the program.

The medical trial applicant program can be reconstructed yet again using
different conditions and the logical operator || (OR). By considering the nega-
tion (in some cases using the NOT operator "!") of the criteria for selection, it is
possible to construct the following conditional expressions:

// initialize boolean flag to trap any unsuitable criteria
boolean reject = false;

// analyze applicant for suitability in trial
if (!gender.equals("FEMALE"))
{

reject = true;
}
else if (!bloodGroup.equals("O"))
{

reject = true;
}
else if (age < 18 || age > 40)
{

reject = true;
}
else if (weight < 90 || weight > 180)
{

reject = true;
}
else

screen.write(name+" your profile for the medical trial is "+
"acceptable.");

if (reject) screen.write(name+" your application for the medical trial was "+
"NOT successful.");

The truth table for logical OR is given in Figure 4.8. It shows that an OR expres-
sion is false only if both its components are false. Looking at the code we see
that if (age < 18) is condition X and (age > 40) is condition Y, then X||Y is

178 Chapter 4 Selection

Condition X Condition Y X || Y

false false false
false true true
true false true
true true true

Figure 4.8 Truth table for logical OR

By examining the truth tables for logical AND and logical OR, Figures 4.7 and 4.8 respec-
tively, it is clear there are occasions when only the condition X need be evaluated. For

example, when using logical AND, if condition X is false, there is no need for the computer to
evaluate condition Y. Similarly, when using logical OR, if condition X is true, there is no need for
the computer to evaluate condition Y. The evaluation of only the first condition in a logical expres-
sion is known as short-circuit evaluation. In Java, both logical operators && and || use short-cir-
cuit evaluation. If you need to avoid short-circuit evaluation, then you may use the corresponding
logical operators & and |.

1i

When using the logical operators && and ||, be careful which condition to write as the first
condition in a logical expression. Using short-circuit evaluation, the conditions in the

remainder of a logical expression may not be evaluated, and as a result your program may not
run as predicted!

!

true if X is true or Y is true or both are true (clearly both conditions cannot be
true in this example).

Similarly, if (weight < 90) is condition X and (weight > 180) is condi-
tion Y, then X||Y is true if X is true or Y is true or both are true. Once again both
conditions cannot be true in this example.

The conditions for gender, blood group, age, and weight can also be com-
bined into

(! gender.equals("FEMALE") || ! bloodGroup.equals("O") ||
(age <18 || age > 40) || (weight < 90 || weight > 180))

Thus, if any one of the conditions is true, the entire conditional expression is
true, and the applicant is not accepted for the medical trial. However, if all the
conditions are false, then the entire conditional expression must be false, the
applicant is FEMALE, has blood group O, is between 18 and 40 years of age, is
between 90 and 180 inches tall, and has fulfilled the criteria for selection.

4.7 Switch 179

SYNTAX

Switch Statement: switch (expression)
{

case c1: statement(s);
case c2: statement(s);

.

.

default: statement(s);
}

4.7 Switch

An ordinal variable has a value that belongs to an ordered set of items. For exam-
ple, integers are ordinal types since they belong to the set of values from
�2,147,483,648 to +2,147,483,647. A character is an ordinal type since it belongs
to the Unicode character set. Real numbers and strings are not ordinal types.

If selection is to be based upon an ordinal type, then a switch statement can
be used in preference to multiple if statements.

The syntax of the switch statement follows.

The expression must evaluate to an ordinal value. Each possible ordinal
value is represented as a case label that indicates the statement to be executed
corresponding to the value of the expression. Those values that are not repre-
sented by case labels will result in the statement after the optional default being
executed. For example,

int number = inputData.getInteger(); // input from a dialog box
switch (number)
{

case 1: screen.write("one"); break;
case 2: screen.write("two"); break;
case 3: screen.write("three"); break;
default: screen.write("number not in the range 1..3");

}

In this example, a number is input at the keyboard. If this number is 1, then the
string one will be output; if it is 2, then the string two will be output; if it is 3,
then the string three will be output. If the number is not 1, 2, or 3, then the
string number not in range 1..3 will be output.

180 Chapter 4 Selection

Failure to exit from the switch will result in the execution of all the case statements fol-
lowing the chosen case.

!

It is necessary to include a way of exiting from the switch statement at the
end of every case.

One method of exiting from a switch statement is through the use of a break
statement at the end of every case list. The keyword break causes the switch
to terminate, and execution resumes with the next statement (if any) following
the end of the switch statement.

If the optional default statement was not present and the value of number
had not been in the range 1 to 3, then the computer would branch to the end of
the switch statement.

In program Example_7, a user is invited to input a value for an exit number
on Highway 6 at Cape Cod. Depending upon the value, from 1 to 12, of the exit
number, the names, numbers, or both of the adjoining roads at that exit are dis-
played. If the value input is not in the range 1 to 12, the statement after the
default will warn the user of the data error. The multiple selection in this prob-
lem can be highlighted by the illustration in Figure 4.9.

// program to demonstrate the switch statement

import avi.*;

class Example_7
{

public static void main(String[] args)
{

// create and show window
Window screen = new Window("Example_7.java","bold","blue",18);
screen.showWindow();

// create and show dialog box and input exit number
DialogBox inputExitNumber = new
DialogBox(screen,"Exit number on Highway 6?");
inputExitNumber.showDialogBox();
int exitNumber = inputExitNumber.getInteger();

screen.write("Exit "+exitNumber+" on Highway 6 connects with ");

// select on the value of the exit number
switch (exitNumber)
{

4.7 Switch 181

true

false

false

false

false (default)

Highway 6A
Sagamore

true
Highway 130

true Quaker Meeting
House Road

true Highway 8A
E. Brewster

DATA ERROR

12?

1?

2?

3?

Figure 4.9 Multiple selection

182 Chapter 4 Selection

case 1: screen.write("Highway 6a/ Sagamore Bridge"); break;
case 2: screen.write("Highway 130"); break;
case 3: screen.write("Quaker Meeting House Road"); break;
case 4: screen.write("Chase Road/ Scorten Road"); break;
case 5: screen.write("Highway 149/ Martons Mills"); break;
case 6: screen.write("Highway 132/ Hyannis"); break;
case 7: screen.write("Willow Street/ Higgins Crowell Road"); break;
case 8: screen.write("Union Street/ Station Avenue"); break;
case 9: screen.write("Highway 134/ S.Dennis"); break;
case 10: screen.write("Highway 124/ Harwich Port"); break;
case 11: screen.write("Highway 137/ S.Chatham"); break;
case 12: screen.write("Highway 6A/ E.Brewster"); break;
default: screen.write("DATA ERROR - incorrect exit number");

Audio.beep(screen);
}

}
}

The contents of the log file after running this program twice follows.

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_7.java date: 3/12/2000 time: 5:48:19

===

At the prompt: Exit number on Highway 6?, you input [7] at the dialog box.

Exit 7 on Highway 6 connects with Willow Street/ Higgins Crowell Road

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_7.java date: 3/12/2000 time: 5:49:45

===

At the prompt: Exit number on Highway 6?, you input [13] at the dialog box.

Exit 13 on Highway 6 connects with DATA ERROR - incorrect exit number

4.7 Switch 183

By comparing the switch statement in the program with the syntax notation,
you should note the following points.

■ An expression is any expression that will evaluate to an ordinal type. In this
example the expression consists of a single variable exitNumber of type
integer, which is expected to evaluate to an integer in the range 1..12.

■ A case label is any value that corresponds to the ordinal type in the expres-
sion. Case labels in this example represent the junctions numbers 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, and 12. Case labels must be unique.

■ The optional default traps any values of the expression that are not repre-
sented as case labels. Without this option, no action would occur when a
value was out of range.

In program Example_7, only one case value was associated with a set of state-
ments. What if more than one case value is used for the same set of statements?

For example, if the requirement was to compute the number of days in a par-
ticular month in the year, a switch statement could be used. The variable
month is an integer in the range 1..12, indicating the months
January..December. Different case labels, separated by a colon, are used for each
month of the year, for the month containing 31 days, 30 days, and 28 days
(assuming a nonleap year).

switch (month)
{

// test for months Jan, Mar, May, Jul, Aug, Oct, Dec
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12: daysInMonth = 31; break;

// test for months Apr, Jun, Sep, Nov
case 4:
case 6:
case 9:
case 11: daysInMonth = 30; break;

// test for Feb (or use default)
case 2: daysInMonth = 28;

}

184 Chapter 4 Selection

4.8 Wrapper Classes

All the primitive types have corresponding classes that provide some general
methods that are useful when dealing with data of the specified type. The
classes are known as wrapper classes since they literally wrap the primitive data
type in a class. Inspect your Java documentation for a full listing of wrapper
classes. A partial listing of the Integer class follows.

public final class Integer
{

public static final int MIN_VALUE = 0x80000000;
public static final int MAX_VALUE = 0x7fffffff;
.
.
// constructors
public Integer(int value);
public Integer(String s);

// instance method
public int intValue();
.
.

}
From this listing you can see the class Integer contains useful maximum and
minimum constants that define the size (in hexadecimal notation) of the largest
negative int MIN_VALUE and the largest positive int MAX_VALUE; constructors
to convert an int or a String to an Integer object; and a method intValue to
convert an Integer object to a primitive int value.

Given a declaration such as:

String dateString = "2001";

the string value can be converted into an integer using a constructor and method
of the Integer wrapper class.

An Integer object is instantiated using a constructor that takes a string
type as its argument, for example:

Integer number = new Integer(dateString);

Once the object number has been created, it can be used to convert the Integer
object into an int by using the instance method intValue():

int date = number.intValue();

These facts are illustrated in Figure 4.10.

4.8 Wrapper Classes 185

"2001"

String dateString = "2001"

dateString

"2001"

Integer number = new Integer(dateString)

number

2001

Int date = number.IntValue():

date

Figure 4.10 Use of the Integer wrapper class

You may recall from Chapter 2 that data was input as strings on the command
line. At that time we could only process string data in the program. By using the
wrapper classes it is now possible to pass data as command-line argument strings
and convert the strings, using wrapper classes, to any primitive data type.

There is a wrapper class in Java for every primitive data type. These classes
are Boolean, Byte, Character, Double, Float, Integer, Long, and Short.
Read the appropriate Java documentation for further details about these wrapper
classes and see Appendix A, Table A.2 for the corresponding primitive types.

CASE STUDY

Body Mass Index
Statement of the Problem. Your body-mass index (BMI) is a measure of the ratio of your
weight to height. It is your weight in kilograms divided by the square of your height in meters.

For instance, if your height is 1.82 meters, the divisor of the calculation will be (1.82*1.82) =
3.3124. If your weight is 70.5 kilograms, then your BMI is 21.28 (70.5/ 3.3124).

Body-mass index has been the medical standard for obesity measurement since the early
1980s. Government researchers developed it to take height into account in weight measure-
ment. Figure 4.11 indicates the medical interpretation of weight with regard to the BMI.

186 Chapter 4 Selection

Write a program to input the name, weight, and height of a person; calculate their body-
mass index, and use this statistic to interpret their weight category according to Figure 4.11.

Identification of Classes and Methods
A noun analysis of the sentence “Write a program to ... ” indicates that program, name, weight,
height, person, body-mass index, index, category are possible candidate classes. These can be nar-
rowed down to just two classes: program and person. The class program is Example_8 and con-
tains the statements to test the constructor and methods of the Person class.

A verb analysis on the same sentence indicates that write, input, calculate, and interpret are
possible candidate methods.

In the final analysis, the calculation of the body-mass index should be performed by the
constructor to ensure that every object (person) has a BMI. This value will need to be retrieved
by the instance method getBMI. The value of the BMI for a person should also be interpreted
according to the values in Figure 4.11; therefore, a second instance method interpretBMI is
also required. If you need to write the name, height, and weight for a person, there will be three
additional instance methods: getName, getHeight, and getWeight, respectively, to return
these three values.

The instance variables of the Person class are name, weight, height, and bmi.
Figure 4.12 illustrates the classes Person and Example_8.

Algorithm Development
The class Person contains the following variables.

public class Person
{

// instance variables
private String name; // name of person
private float height; // metric units only (m)

BMI Interpretation

<20 underweight

20 to <25 appropriate weight

25 to <30 overweight

30 to <39 obese

Figure 4.11 BMI value analysis

Case Study: Body Mass Index 187

private float weight; // metric units only (kg)
private float bmi; // body mass index

.

.
}

The constructor initializes the instance variables name, height, and weight from the values
passed via the formal parameter list and calculates the body-mass index. By calculating the BMI
in the constructor, you will ensure that every object (person) has a BMI.

public Person(String nameOfPerson, float bodyHeight, float bodyWeight)
{

name = nameOfPerson;
height = bodyHeight;
weight = bodyWeight;
bmi = weight / (height*height);

}

There are a number of instance methods to just return information: getName(), getHeight(),
getWeight(), and getBMI(). These are trivial to code and are not included here; however, they
are included in the final listing of the class Person.

Example_8Person

-name
-height
-weight
-bmi

+Person
+getName
+getHeight
+getWeight
+getBMI
+interpretBMI

+main

Figure 4.12 UML representation of classes

188 Chapter 4 Selection

The final instance method interprets the body-mass index that was originally calculated by
the constructor.

public String interpretBMI()
{

if (bmi < 20.0f)
return "underweight";

else if (bmi >= 20.0f & bmi < 25.0f)
return "an appropriate weight";

else if (bmi >= 25.0f & bmi < 30.0f)
return "overweight";

else if (bmi >= 30.0f & bmi <= 39.0f)
return "obese";

else
return "you should consult a physician";

}

Testing
Test data used to create different Person objects (people)

Person object Name Height (m) Weight (kg) BMI

anybody Fred Smith 1.73 84.5 28.23

anybody Charlie Gomez 1.65 92.7 34.05

anybody Betty Ramirez 1.69 65.5 22.93

anybody Sonia Wall 1.75 59.7 19.49

Desk check on the instance methods getBMI and interpretBMI for different objects (people)

Name BMI Interpretation

Fred Smith 28.23 overweight

Charlie Gomez 34.05 obese

Betty Ramirez 22.93 appropriate weight

Sonia Wall 19.49 underweight

A listing of the completed Person class follows.

public class Person
{

// instance variables
private String name; // name of person
private float height; // metric units only (m)

Case Study: Body Mass Index 189

private float weight; // metric units only (kg)
private float bmi; // body-mass index

// constructor
/**
The Person class will create a person object.
@param nameOfPerson is the person's name.
@param bodyHeight is the height of the person in meters.
@param bodyWeight is the weight of the person in Kilograms.
*/
public Person(String nameOfPerson,

float bodyHeight,
float bodyWeight)

{
name = nameOfPerson;
height = bodyHeight;
weight = bodyWeight;
bmi = weight / (height*height);

}

// instance methods
/**
getName is used to return the name of the person.
@return The name of the person.
*/
public String getName()
{

return name;
}

/**
getHeight is used to return the height of the person in meters.
@return The height of the person in meters.
*/
public float getHeight()
{

return height;
}

/**
getWeight is used to return the weight of the person in kilograms.
@return The weight of the person in kilograms.
*/
public float getWeight()

190 Chapter 4 Selection

{
return weight;

}

/**
getBMI is used to return the body-mass index of the person.
@return The body-mass index of the person.
*/
public float getBMI()
{

return bmi;
}

/**
interpretBMI is used to return an interpretation of the body-
mass index for the person.
@return An interpretation of the body-mass index for the person.
*/
public String interpretBMI()
{

if (bmi < 20.0f)
return "underweight";

else if (bmi >= 20.0f & bmi < 25.0f)
return "an appropriate weight";

else if (bmi >= 25.0f & bmi < 30.0f)
return "overweight";

else if (bmi >= 30.0f & bmi <= 39.0f)
return "obese";

else
return "you should consult a physician";

}
}

The class Example_8 is used to test the constructor and the methods of the class Person. The
design of this class may be represented by the following pseudocode.

1. create a window object screen

2. create a dialog box and input the name

3. create a slider object to input the height in centimeters

4. convert the height to meters

5. create a slider object to input the weight in kilograms X 10

6. convert the weight to kilograms

Case Study: Body Mass Index 191

7. create a person object

8. display the name, height, and weight of the person

9. calculate and display the body-mass index, and interpretation of bmi

Example_8 Person

Window

DialogBox

Slider

Figure 4.13 UML representation of dependencies

From the pseudocode it is possible to draw the UML dependency diagram shown in Figure 4.13.
The first slider will input a height in centimeters, and the second slider will input a weight in

kilograms multiplied by a factor of 10. In both cases the fine graduation of scales is to allow for a
height to be input to an accuracy of 1 cm, and a weight to an accuracy of 1⁄10th of a kilogram.

Notice that the data input from both sliders needs to be in the correct units (m) and (kg),
respectively, before they can be used as arguments in the constructor.

// case study on body-mass index

import avi.*;

class Example_8
{

public static void main(String[] args)

192 Chapter 4 Selection

{
String name;
float height, weight;

// create and show window
Window screen = new Window("Example_8.java","bold","black",24);
screen.showWindow();

// create dialog box and input name
DialogBox inputName = new DialogBox(screen,"Name?");
inputName.showDialogBox();
name = inputName.getString();

// create and show slider and input height
Slider inputHeight = new
Slider(screen,"Height (cm)?",135,230,1);
inputHeight.showSlider();

// convert height to (m)
height = (float)inputHeight.getValue()/100.0f;

// create and show slider and input weight
Slider inputWeight = new
Slider(screen,"Weight (Kg)x10 ?",300,1900,1);
inputWeight.showSlider();

// convert weight to (kg)
weight = (float)inputWeight.getValue()/10.0f;

// create person, calculate bmi and interpret the result
Person anybody = new Person(name, height, weight);

// display statistics about person
screen.write("Name: "+anybody.getName()+"\n");
screen.write("Height m: "+anybody.getHeight()+"\n");
screen.write("Weight kg: "+anybody.getWeight()+"\n");
screen.write("Body-mass index is "+anybody.getBMI()+"\n");
screen.write("Interpretation of BMI means that you are "+

anybody.interpretBMI());
}

}

A screen shot of the program being run follows.

Case Study: Body Mass Index 193

The contents of the corresponding log file follows.
==

L O G F I L E
audio-visual interface [avi] - Release 1.0 - by Barry Holmes

filename: Example_8.java date: 3/12/2000 time: 9:0:2
==

At the prompt: Name?, you input [Fred Smith] at the dialog box.

At the prompt: Height (cm)?, you selected [173] from the slider.

At the prompt: Weight (Kg)x10 ?, you selected [845] from the slider.

Name: Fred Smith
Height m: 1.73
Weight kg: 84.5
Body-mass index is 28.233484
Interpretation of BMI means that you are overweight

194 Chapter 4 Selection

4.9 Yet another AVI Class!

The Memo Class
A Memo object is illustrated in Figure 4.14. The object is an output window. Its
purpose is to inform the user of any events that are happening when a program
is running. You have seen this object many times before since the avi uses it
when loading sound files, loading image files, informing users about inputting
the wrong format for numbers in a dialog box, and so on.

The Memo class contains the following constructor and public instance
methods:

public class Memo
{

public Memo(Window parent,
String firstLine,
String secondLine,
String thirdLine,
boolean mode);

public void showMemo();
public void hideMemo();

}

Modify program Example_8 as follows.

(1) Use radio buttons to give a person a choice as to whether they want to input
a height in inches and a weight in pounds or a height in meters and a weight
in kilograms. Remember the BMI is calculated using height in meters and
weight in kilograms.

(2) According to the choice made, use the appropriate scales on the sliders.

NOW DO THIS

Figure 4.14 An example of a Memo object

4.10 The This object 195

To create a Memo object, you must use the class constructor that requires five
items of data in the formal parameter list:

parent—a Window type that specifies the container on which to display a Memo
object.

firstLine, secondLine, and thirdLine—string types that allow for textual
information to be displayed by the Memo object. You do not have to fill every
line; it is permissible to use an empty string ("") where required.

mode—a boolean type that specifies whether the memo is to remain on the
screen until the memo’s window is closed. If the mode is set to true, the
only way to advance to the next executable statement in the program is by
closing the memo’s window.

If the mode is set to false, then the computer will advance to the next exe-
cutable program instruction without waiting for you to even read what is con-
tained in the memo object. For this reason it is necessary to introduce a
timed-delay after the statement to show the memo on the screen.

Assuming that you have already created a screen window-pane object, then
to represent the memo depicted in Figure 4.14, the Memo constructor may be
coded as:

Memo message = new Memo(screen,
"Error! day out of range",
"value input was "+day,
"CLOSE to quit program",
true);

The memo is displayed on the screen using the instance method showMemo(),
for example:

message.showMemo();

The memo may be hidden from view using the instance method hideMemo().

4.10 The This Object

Suppose you have created an instance method within a class. For the sake of
reuse of code, you want to call that method from another method within the
same class. However, instance methods are only invoked by passing a message to
an object. How, within a class, do you invoke an instance method of that class
when the object is declared outside of the class?

196 Chapter 4 Selection

The keyword this refers to the current object, which is the object being instantiated in the
case of the constructor.

1i

The this keyword may be used within a class to refer to any object of that
class type.

For example, suppose the instance method isALeapYear had been defined
within a class to return true if a year was a leap year and otherwise return false:

public boolean isALeapYear();

This instance method may be reused in another instance method,
daysInMonth, to calculate and return the number of days in a month. Part of
the coding for the daysInMonth method is listed here.

public int daysInMonth()
{

.

.

// test for Feb being a Leap Year
case 2:if (this.isALeapYear())

return 29;
else
return 28;

.

.
}

We will use the above code in the case study of the next section.

CASE STUDY

Validation of Dates including Leap Years
Statement of the Problem. Write a program to input a date, as a string, in the format MMD-
DYYYY where MM represents a two-digit month, DD represents a two-digit day, and YYYY
represents a four-digit year. Check the validity of the date, and report on any errors. For valid
dates only, divide the date up into its three numerical components of month, day, and year, and
write these values to the screen. Determine whether the year is a leap year, and report on your
findings. Calculate the number of days in the month and write your result on the screen.

Case Study: Validation of Dates including Leap Years 197

Identification of Classes and Methods
Finding a relevant class using noun analysis is not particularly helpful in this problem. Basically,
the solution to the problem depends on validating a date string and finding attributes about the
date. The only two classes that appear relevant are a program class which we will name
Example_9, and a class containing tests and calculations on the date string, which we will name
DateString.

A verb analysis proves a little more fruitful, since the problem contains many actions such as
checking the validity of a date, dividing the date into month, day, and year, and outputting these
values. Other activities include reporting on leap years and the number of days in a month.

If we assume that the month, day, and year are instance variables, then the constructor will
take the date string as a formal parameter and check on the numerical validity of the contents of
the string before assigning the values to the instance variables.

Since we need to output the month, day, and year, it makes sense to have three instance
methods to perform this activity—getMonth, getDay, and getYear.

Other instance methods that may be derived from the verb analysis are isALeapYear and
daysInMonth. The functionality of these methods should be obvious from their names (see
Figure 4.15).

Example_9 DateString

-month
-day
-year

+Calendar
+getMonth
+getDay
+getYear
+getNameOfMonth
+isALeapYear
+daysInMonth

 +main

Figure 4.15 UML class diagrams

Algorithm Development
The DateString class contains the following constants and instance variables.

public class DateString
{

private static final String[] NAMES_OF_MONTHS =

198 Chapter 4 Selection

{"January","February","March","April",
"May","June","July","August",
"September","October","November","December"};

private int month;
private int day;
private int year;
.
.

}

Notice that an array containing the names of the months has been declared as a static con-
stant. The instance method nameOfMonth will use the numerical value of the month as an index
to the string array, to locate the correct name. Remember that array indexes start at cell 0, so the
numerical value of the month will need to be reduced by 1 before you attempt to use it as an
index to the array.

The constructor of the class DateString has to perform the following operations.

1. validate the length of the formal parameter
2. if length of date != 8
3. report error and quit program
4. convert the date string to an integer using a wrapper class
5. split up the date into month, day, and year
6. if month <1 or month > 12
7. report error and quit program
8. if day < 1 or day > number of days in month
9. report error and quit program

This pseudocode can be written in Java as follows.

public DateString(WindowPane screen, String dateString)
{

// validate date
Memo message;

if (dateString.length() != 8)
{

Audio.beep(screen);
message = new Memo(screen,

"Error! date format not 8 digits",
"value input was "+dateString,
"CLOSE to quit program",
true);

message.showMemo();

Case Study: Validation of Dates including Leap Years 199

screen.closeWindowAndExit();
}
// use a wrapper class to convert the string to an integer
Integer number = new Integer(dateString);
int date = number.intValue();

// split up date into MM DD and YYYY
month = date / 1000000;
day = (date % 1000000) / 10000;
year = (date % 10000);

if (month < 1 || month > 12)
{

Audio.beep(screen);
message = new Memo(screen,"Error! month out of range",

"value input was "+month,
"CLOSE to quit program",true);

message.showMemo();
screen.closeWindowAndExit();

}

if (day < 1 || day > this.daysInMonth())
{

Audio.beep(screen);
message = new Memo(screen,"Error! day out of range",

"value input was "+day,
"CLOSE to quit program",true);

message.showMemo();
screen.closeWindowAndExit();

}
}

The instance methods to getMonth, getDay, and getYear are trivial to code since they simply
return the numerical value of the instance variables month, day, and year respectively. These
methods will appear in the final listing of the DateString class. The instance method
isALeapYear relies upon the following algorithm to test whether a year is a leap year or not.

1. if the year is evenly divisible by 4 and the year is not a century
or the year is a century that is divisible by 400 then

2. the year is a leap year
3. else
4. the year is NOT a leap year

200 Chapter 4 Selection

This algorithm can be expressed as follows:

public boolean isALeapYear()
{

if (((year%4 == 0) && (year%100 != 0)) || (year%400 == 0))
return true;

else
return false;

}

The instance method daysInMonth relies upon the following algorithm to return the correct
number of days in a given month.

public int daysInMonth()
{

// calculate number of days in month
switch(month)
{

// test for Jan, Mar, May, Jul, Aug, Oct, Dec
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12: return 31;

// test for Apr, Jun, Sep, Nov
case 4:
case 6:
case 9:
case 11: return 30;

// test for Feb being a Leap Year
case 2:if (this.isALeapYear())

return 29;
else

return 28;
default: return 0;

}
}

Case Study: Validation of Dates including Leap Years 201

Testing

Test data used to create DateString objects

DateString object dateString Month Day Year Error message

anyDate 262000 date format not 8 digits

anyDate 03181997 3 18 1997

anyDate 02121992 2 12 1992

anyDate 02301987 2 30 1987 day out of range

anyDate 20091999 20 9 1999 month out of range

anyDate 02062001 2 6 2000

anyDate 06141999 6 14 1999

Desk check of instance method daysInMonth

DateString object Month Day Year isALeapYear daysInMonth

anyDate 3 18 1997 false 31

anyDate 2 12 1992 true 29

anyDate 2 6 2001 false 28

anyDate 6 14 1999 false 30

The dependencies of the DateString class are shown in Figure 4.16.

DateString Audio

Memo

Window

Figure 4.16 The UML representation of the dependencies

202 Chapter 4 Selection

A listing of the completed class DateString follows.

import avi.*;

public class DateString
{

// class constants
private static final String[] NAMES_OF_MONTHS =

{"January","February","March","April",
"May","June","July","August",
"September","October","November","December"};

// instance variables
private int month;
private int day;
private int year;

// constructor
/**
The DateString class enables an object to be created that represents
a date in the format MMDDYYYY.
@param screen is the container for any memo objects that might be
shown.
@param dateString is the date in the format MMDDYYYY.
*/
public DateString(Window screen, String dateString)
{

// validate date
Memo message;

if (dateString.length() != 8)
{

Audio.beep(screen);
message = new Memo(screen,"Error! date format not 8 "+

"digits",
"value input was "+dateString,
"CLOSE to quit program",true);

message.showMemo();
screen.closeWindowAndExit();

}

Case Study: Validation of Dates including Leap Years 203

// use a wrapper class to convert the string to an integer

Integer number = new Integer(dateString);
int date = number.intValue();

// split up date into MM DD and YYYY
month = date / 1000000;
day = (date % 1000000) / 10000;
year = (date % 10000);

if (month < 1 || month > 12)
{

Audio.beep(screen);
message = new Memo(screen,"Error! month out of range",

"value input was "+month,
"CLOSE to quit program",true);

message.showMemo();
screen.closeWindowAndExit();

}

if (day < 1 || day > this.daysInMonth())
{

Audio.beep(screen);
message = new Memo(screen,"Error! day out of range",

"value input was "+day,
"CLOSE to quit program",true);

message.showMemo();
screen.closeWindowAndExit();

}
}

// instance methods
/**
getMonth returns the month as an integer.
@return The value of the month as an integer.
*/
public int getMonth()
{

return month;
}

204 Chapter 4 Selection

/**
getDay returns the month as an integer.
@return The value of the day as an integer.
*/
public int getDay()
{

return day;
}

/**
getYear returns the year as an integer.
@return The value of the year as an integer.
*/
public int getYear()
{

return year;
}

/**
getNameOfMonth returns the name of the month.
@return The name of the month as string.
*/
public String getNameOfMonth()
{

return NAMES_OF_MONTHS[month-1];
}

/**
isALeapYear determines whether the year is a Leap year
@return true if the year is a Leap year.
*/
public boolean isALeapYear()
{

if (((year%4 == 0) && (year%100 != 0)) || (year%400 == 0))
return true;

else
return false;

}

/**
daysInMonth returns the number of days in a month
@return The number of days in the month as an integer.

Case Study: Validation of Dates including Leap Years 205

*/
public int daysInMonth()
{

// calculate number of days in month
switch(month)
{

// test for Jan, Mar, May, Jul, Aug, Oct, Dec
case 1:
case 3:
case 5:
case 7:
case 8:
case 10:
case 12: return 31;

// test for Apr, Jun, Sep, Nov
case 4:
case 6:
case 9:
case 11: return 30;

// test for Feb being a Leap Year
case 2:if (this.isALeapYear())

return 29;
else

return 28;
default: return 0;

}
}

}

The design of class Example_9 is given by the following pseudocode.

1. create a window object screen
2. create a dialog box and input the date
3. create a DateString object
4. display details about the date
5. if date is a leap
6. display leap year
7. else
8. display NOT leap year
9. display number of days in the month

206 Chapter 4 Selection

The UML dependency diagram for the classes Example_9 and DateString is shown in Figure
4.17.

The complete listing of class Example_9 follows.

// case study - validate date

import avi.*;

class Example_9
{

public static void main(String[] args)
{

String date;

// create and show window
Window screen = new Window("Example_9.java","bold","blue",24);
screen.showWindow();

// create and show dialog box and input date in format MMDDYYYY
DialogBox inputDate = new DialogBox(screen,"date as MMDDYYYY");
inputDate.showDialogBox();
date = inputDate.getString();

Example_9 DateString

Window

DialogBox

Audio

Window

Memo

Figure 4.17 UML dependency diagrams

Case Study: Validation of Dates including Leap Years 207

// create DateString object
DateString anyDate = new DateString(screen,date);

// write details to the screen about the date
screen.write("Date input was "+anyDate.getMonth()+

"/"+anyDate.getDay()+"/"+anyDate.getYear()+";\n");

if (anyDate.isALeapYear())
screen.write(anyDate.getYear()+" is a Leap year;\n");

else
screen.write(anyDate.getYear()+" is NOT a Leap year;\n");

screen.write("The month "+anyDate.getNameOfMonth()+" has "+
anyDate.daysInMonth()+" days.");

}
}

A screen shot from the program running follows, together with the contents of the log file.

208 Chapter 4 Selection

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_9.java date: 3/12/2000 time: 9:40:11

===

At the prompt: date as MMDDYYYY, you input [03122000] at the dialog box.

Date input was 3/12/2000;
2000 is a Leap year;
The month March has 31 days.

A second screen shot from the program running with error data follows, together with the con-
tents of the log file.

Summary 209

==
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_9.java date: 3/12/2000 time: 9:47:37

==

At the prompt: date as MMDDYYYY, you input [02302000] at the dialog box.

< memo contained Error! day out of range value input was 30 CLOSE to quit
program >

S U M M A R Y

■ A conditional expression evaluates to either true or false.

■ Depending upon the result of the conditional expression, it is possible for
the computer to select different statements in an if statement.

■ Comparison of real numbers for equality should be avoided, since real num-
bers are not always accurately stored by the computer.

■ Conditional expressions can be combined into one expression by using the
logical operators && (AND) and || (OR).

■ Short-circuit evaluation will result in conditions not being evaluated in a con-
ditional expression.

■ Both && and || use short-circuit evaluation. If long evaluation is required, use
& and |, respectively.

■ if statements may be nested within each other.

■ In nested if statements, an else keyword belongs to the nearest if keyword
that has not already been paired with an else.

■ When selection is based upon an ordinal type, a switch statement may be
used.

■ All case labels must be unique and of the ordinal type compatible with the
selector type.

■ Wrapper classes are used to provide constants and general methods for the
primitive data types.

■ The this keyword refers to the current object for which the instance method
or constructor is called.

210 Chapter 4 Selection

Review Questions
1. What is the syntax of an if statement?

2. Distinguish between the operators = and ==.

3. How many statements are allowed after the if keyword?

4. How many statements are allowed after the else keyword?

5. What is a conditional expression?

6. What symbols are used for the logical operators AND and OR?

7. What is short-circuit evaluation?

8. Why do we indent statements in an if statement?

9. What are nested if statements?

10. Explain the purpose of the switch statement.

11. Why should a break statement be used within a switch statement?

12. What are case labels?

13. When is the default label used in a switch statement?

14. If a statement corresponds to many case labels in a switch statement, how are the
case labels organized?

Exercises
15. If A = 1, B = -2, C = 3, D = 4, E = 'S', and F = 'J', state whether the following condi-

tions are true or false.

(a) A==B

(b) A>B

(c) (A<C && B<D)

(d) !(A<C && B>D)

(e) (A>B || C<D)

(f) E>F

(g) ((A+C)>(B-D)) && ((B+C)<(D-A))

16. Code the following conditions in Java. Assume all variables are of type int.

(a) X is equal to Y.

(b) X is not equal to Y.

Exercises 211

(c) A is less than or equal to B.

(d) Q is not greater than T.

(e) X is greater than or equal to Y.

(f) X is less than or equal to Y and A is not equal to B.

(g) A is greater than 18 and H is greater than 68 and W is greater than 75.

(h) G is less than 100 and greater than 50.

(i) H is less than 50 or greater than 100.

17. Trace through the following segment of code for each of (a), (b), and (c) and state the
output in each case.

(a) A = 16, B = 16, C = 32

(b) A = 16, B = -18, C = 32

(c) A = -2, B = -4, C = 16

if (A>0)
{

if (B<0)
screen.write("x");

else
if (C>20)

screen.write("y");
}
else

screen.write("z");

18. Trace through the following segment of code for each new value of the variable charac-
ter and state the output.

(a) character = 'B'; (c) character = 'a';

(b) character = '4';

switch (character)
{

case 'a': case 'b': case 'c': screen.write("small letter");
break;

case 'A': case 'B': case 'C': screen.write("capital letters");
break;

case '1': case '2': case '3': screen.write("digits"); break;
default : screen.write("error in data");

}

212 Chapter 4 Selection

19. Correct the syntax in this program segment.

if y > 25
x == 16;
screen.write("x = " + x);

else
y = 20

20. The lengths of the four sides of a quadrilateral and the measure of one internal angle are
input into a computer. Design an algorithm using pseudocode to categorize the shape of
the quadrilateral as a square, rhombus, rectangle, parallelogram, or irregular quadrilat-
eral. Remember to give your algorithm a desk check using suitably chosen data.

The rules for determining the shape of the quadrilateral follow.

Internal angle is a

Name All sides equal? Opposite sides equal? right angle.

square true true true

rectangle false true true

rhombus true true false

parallelogram false true false

irregular false false -

Programming Problems
21. Return to Question 18 in Chapter 2. Rewrite the program to allow for a change in the

size of the font in addition to the change in the style of the font and color of the text.
You should use command-line input to change the values of the parameters to the
Window constructor. Use a wrapper class to convert the size of the font from a string to
an integer.

22. A worker is paid at the hourly rate of $8 per hour for the first 35 hours worked.
Overtime is paid at 1 1⁄2 times the hourly rate for the next 25 hours worked and paid at 2
times the hourly rate for additional hours worked. Write a program to input the number
of hours worked; then calculate and output the total amount paid, broken into regular
pay and overtime pay.

23. A student traveling to Florida for Spring Break will consider a particular airline if the
round trip ticket costs less than $200 and has a layover of no longer than four hours, or if
the ticket costs between $200 and $300 and has no layover. Write a program to input
the name of an airline, cost of ticket, and layover time; output the name of the airline
only if it meets the student’s criteria.

Programming Problems 213

Value of sales Commission

$1–999 1%

$1000–$9999 5%

$10000–$99999 10%

Figure 4.18 Scale of commission

Season Charge

Spring $5.00

Summer $7.50

Autumn $3.75

Winter $2.50

Figure 4.19 Rental rates

24. A student choosing among payment plans for a college loan wants to keep the monthly
payments to less than $200. If the initial amount of the loan is $5,000, then write a pro-
gram to calculate which plans are acceptable given different loan lengths and simple
interest rates.

25. Write a program to implement the algorithm that you designed and tested in Question 20.
26. A salesperson earns a commission on the value of sales. Figure 4.18 shows the scale of

the commission. Write a program to input a figure for the value of the sales, and then
calculate and output the commission.

27. Write a program to mimic a calculator. Input two real numbers and state whether the
numbers are to be added, subtracted, multiplied, or divided. Consider the possibility of a
denominator being zero in the division of two numbers.

28. A bicycle shop in Hyannis rents bicycles by the day at different rates throughout the
year, according to the season (see Figure 4.19). The proprietor also gives a 25% discount
if the rental period is greater than 7 days. Renters must also pay a $50 returnable deposit
for each bicycle rented. Write a program to input the season and the number of days of
rental, and then calculate and display a total charge that includes the deposit.

29. Create a set of digitized images relating to your favorite hobby or sport. For example,
with a sport such as golf, get a friend to take pictures of your progress (or frustration)
over, say, 9 holes. Record a set of sound clips to describe how you played each hole.
Write a program to display radio buttons for each hole. On pressing a button, show the
image of you playing the hole, and play the accompanying sound commentary.

30. Create a program that will use two radio-button boxes to query the user about their
preferences for a vacation. (For example, do they prefer sports, scenery, or sightseeing
and do they prefer to be adventurous or not?) Based on the user’s responses, have the

214 Chapter 4 Selection

program suggest a vacation spot by writing out a short description of a location and pro-
viding a picture or two of the location. For example, if the person prefers scenery on a
budget, you might “advertise” a local nature trail.

31. Use the Internet to search for a table of the Beaufort Wind Speed Scale. Try the follow-
ing URL that was current at the time of writing:
http://www.iesd.dmu.ac.uk/ ~slb/wc111t1.html

Create the following class.
public class Beaufort

{
// constructor
public Beaufort(float windSpeedLow, float windSpeedHigh);

// instance methods
public int windForce();
public String description();

}

For example, according to the Beaufort Wind Speed Scale, a wind speed between 55.2
mph (windSpeedLow) and 74.8 mph (windSpeedHigh) would be classified as wind
force 10 and described as a strong gale.

Write a driver program to create Beaufort objects relating to different wind speeds
and display the corresponding wind force values and descriptions.

32. During hot weather it is commonplace for weather reports to include information on the
strength of the ultra-violet (UV) radiation from the sun, and the burning effect of this
radiation upon your skin.

In the U.S., the UV Index is computed using forecasted ozone levels,
a computer model that relates ozone levels to UV incidence on the

ground, forecasted cloud amounts, and the elevation of the forecast
cities.

The calculation starts with measurement of current total ozone
amounts for the entire globe, obtained via two satellites operated by the
National Oceanic and Atmospheric Administration (NOAA). These data are
then used to produce a forecast of ozone levels for the next day at various
points around the country. A radiative transfer model is then used to
determine the amount of UV radiation reaching the ground from 290 to
400 nm in wavelength, using the time of day (solar noon), day of the year,
and latitude. This and more information is available on the Environmental
Protection Agency Web site:
http://www.epa.gov/sunwise1/uvindex/uvcalc.html

1i

http://www.iesd.dmu.ac.uk/~slb/wc111t1.html
http://www.epa.gov/sunwise1/uvindex/uvcalc.html

Programming Problems 215

Create the following class.
public class Sunburn
{

// constructor
public Sunburn(int uvRadiationlevel,

String cloudCover,
int heightAboveSea);

// instance methods
public int getUVIndex();
public String interpretUVIndex();

}

The getUVIndex method assumes the total amount of UV radiation for one day on a
person’s skin has already been calculated. For the purpose of this question the measure
of this radiation will be limited to within the range 250 .. 350 units. The question also
assumes that the hottest weather occurs during the summer months when the sun is
closest to the location being used to measure the weather.

The final figure for UV radiation is adjusted for the height of the location above sea
level. UV at the surface increases about 6% per kilometer above sea level.

The amount of UV radiation changes with the cloud coverage. Clear skies permit
100% of the incoming UV radiation to reach the surface; scattered clouds transmit 89%;
broken clouds transmit 73%; overcast conditions transmit 31%.

The final figure for the UV index is then scaled by a factor of 25 to result in a UV
index from 0 .. 22.

The UV Index provides a daily forecast of the expected risk of overexposure to the
sun. The UV index can be interpreted into the following risk categories. However, the
table shown in Figure 4.20 does not take into account the color of a persons skin. Fair-
skinned people are at a greater risk from UV radiation than dark-skinned people.

Write a driver program to create Sunburn objects and test the various methods
within the class.

Figure 4.20 Risk from UV radiation levels

UV Index Risk

0 – 2 Minimal

3 – 4 Low

5 – 6 Moderate

7 – 9 High

10+ Very High

This page intentionally left blank

C H A P T E R 5
Repetition and
One-Dimensional
Arrays
In the previous chapters, it was necessary to run some programs
several times to demonstrate the effect that different items of input
data would have on the results. At the time, you might have thought
this approach was a little cumbersome. How much better it would be
if we had a structure in the program that would allow statements to
be repeated.

The purpose of this chapter is to introduce you to three methods for repeat-
ing statements that are based on the control structures known as while,
do..while, and for. The chapter also revisits arrays and introduces the avi
CheckBox class, the last of the avi classes. By the end of the chapter you
should have an understanding of the following topics.

■ The concept of a loop

■ The syntax and appropriate use of while, do..while, and for loop
statements

■ The use of postfix increment and decrement operators

■ One-dimensional arrays

■ The avi CheckBox class

■ The Java library NumberFormat class
217

218 Chapter 5 Repetition and One-Dimensional Arrays

Initialize loop
control variable

Increment loop
control variable

Statements within
the body of the loop

Variable
within
limits ?

NO

YES

Figure 5.1 Loop variable controlled by a counter

5.1 Loop Structure

In writing a computer program it is often necessary to repeat part of a program
a number of times. One way to achieve repetition is to write out that part of the
program as many times as it is needed. This method is very impractical since it
produces a very lengthy computer program and the number of repetitions is not
always known in advance.

A better way to repeat part of a program a number of times is to introduce a
loop into the code. The illustration in Figure 5.1 shows one mechanism for set-
ting up a loop.

In this example, a counter is used as a loop control variable to record the
number of times part of the program is repeated. The following operations take
place on the loop control variable.

5.1 Loop Structure 219

Input value of loop
control variable

Input value of loop
control variable

Statements within
the body of the loop

Variable
NOT =
sentinel ?

NO

YES

Figure 5.2 Loop variable controlled by data

1. The loop control variable must be initialized before the computer enters the loop.

2. The value of the loop control variable is tested to see whether it is within specified
limits for looping to continue. If the loop control variable is not within these lim-
its, then the computer must exit from the loop.

3. The statements within the body of the loop are executed.

4. The value of the loop control variable is incremented by 1 to indicate that the
statements have been performed once.

5. Go back to step 2, thereby completing the loop.

Notice from Figure 5.1 that if the loop control variable is initialized to a value
that is outside of the limits, then the loop will never be entered and the state-
ments within the body of the loop will never be executed.

The loop control variable does not have to be assigned values from within
the program. The initialization and incremental increase of this variable can be
replaced by reading data from an input object such as a dialog box. The illustra-
tion in Figure 5.2 shows that values of the loop control variable are input rather

220 Chapter 5 Repetition and One-Dimensional Arrays

SYNTAX

While Loop: while (conditional-expression) statement(s);

than assigning values from within a program. Notice that a certain value input
will trigger the exit from the loop. This value is known as a sentinel value.

5.2 While Loop

A while loop will allow a statement to be repeated zero or more times and
behaves in the same manner as depicted by the illustrations in Figures 5.1 and
5.2. The syntax of the while loop follows.

Notice that many statements may follow the conditional expression. If more
than one statement is to be repeated, it is necessary to enclose the statements
within braces {} so the computer treats the statements as a block.

While Loop Controlled by a Counter
The following segment of code uses a while loop and a loop variable controlled
by a counter, as illustrated in Figure 5.1.

counter = 1; // initialize loop control variable
while (counter <= 5) // test if variable is within limits
{

screen.write(counter + "\n");
counter = counter + 1; // increment loop control variable

}

The value of counter is initialized to 1; the condition (counter<=5) is true;
therefore, the value of the counter is output. The counter is incremented by 1 to
the value 2; the condition (counter<=5) is true, so the value of counter is out-
put again. The process continues while the condition (counter<=5) remains
true. When counter is incremented to the value 6, the condition (counter<=5)
becomes false and the computer exits from the while loop. The loop body will
execute five times.

While Loop Controlled by Data
Consider the use of a while loop to read in a set of numbers when the numbers
are not zero, display each number on the screen, and output the sum of the
numbers. The numbers are input from a slider, and the value 0 (zero) is the sen-
tinel value. The following segment of code uses a while loop and a loop variable
controlled by data, as illustrated in Figure 5.2.

5.2 While Loop 221

// input value of loop control variable from slider
input.showSlider();
number = input.getValue();

while (number != 0) // test if variable is a sentinel value
{

screen.write(number + "\n");
sum = sum + number;

// input value of loop control variable from slider
input.showSlider();
number = input.getValue();

}

If the first number to be input is zero, then the conditional expression (num-
ber!=0) will be false. The computer will not enter the loop but branch to the
next executable statement after the end of the compound statement delimited
by the braces {}. Since the loop was not entered, the loop is said to be repeated
zero times.

However, if the first number to be input is nonzero, the conditional expres-
sion would be true and the computer would execute the statements contained
within the loop. To this end, the number would be displayed on the screen, the
sum would be incremented, and the next number input at the slider. The com-
puter then returns to the line containing the conditional expression, which is
reevaluated to test whether the new number is not zero. If the condition is true,
the computer continues to execute the statements in the body of the loop. If the
condition is false, the computer will branch to the next executable statement
after the end of the compound statement.

To restate the behavior of the while loop: If the first number read is zero,
then the loop is not entered, and the statements within the loop are repeated
zero times. If the second number to be read is zero, the statements in the loop
will be repeated once. If the third number to be read is zero, the statements in
the loop will be repeated twice, and so on. Therefore, if the hundredth number
to be read is zero, the statements inside the loop will have been repeated 99
times.

The following Java program uses the data controlled loop described above.

Note that for clarity, the body of the while loop is indented. Therefore, when other kinds of
loops are introduced in this chapter, we will follow the same pattern of indentation. In addi-

tion, we will utilize indentation in writing the pseudocode. Getting into the habit of identifying
the structure of a loop at the algorithm stage of program design will facilitate the eventual coding
of the loop.

1i

222 Chapter 5 Repetition and One-Dimensional Arrays

// program to demonstrate a while loop controlled by input data

import avi.*;

class Example_1
{

static public void main(String[] args)
{

// sum will hold the sum of the numbers input so far
int sum = 0;

Window screen = new Window("Example_1.java");
screen.showWindow();

Slider input = new
Slider(screen,"zero terminates loop",-100,+100,1);
input.showSlider();

// input value of loop control variable from slider
int number = input.getValue();

while (number != 0)
{

screen.write("non-zero number input is "+number+"\n");
sum = sum + number;

// input value of loop control variable from slider
input.showSlider();
number = input.getValue();

}

screen.write("\n.. computer has exited from the while loop");
screen.write("\n The sum of the numbers is " + sum);

}
}

Run the program twice. The first time, input 0 (zero) as the first number and
notice that the contents of the loop body are never executed. The second time,
input up to 10 different, nonzero numbers in the range �100 to �100 before
inputting 0 (zero). The statements within the while loop should be repeated up
to 10 times.

The log files for each run follow.

5.2 While Loop 223

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_1.java date: 6/29/2000 time: 7:40:52

===

At the prompt: zero terminates loop, you selected [0] from the slider.

.. computer has exited from the while loop
The sum of the numbers is 0

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_1.java date: 6/29/2000 time: 7:49:25

===

At the prompt: zero terminates loop, you selected [89] from the slider.

non-zero number input is 89
At the prompt: zero terminates loop, you selected [20] from the slider.

non-zero number input is 20
At the prompt: zero terminates loop, you selected [-72] from the slider.

non-zero number input is -72
At the prompt: zero terminates loop, you selected [-20] from the slider.

non-zero number input is -20
At the prompt: zero terminates loop, you selected [33] from the slider.

non-zero number input is 33
At the prompt: zero terminates loop, you selected [59] from the slider.

non-zero number input is 59
At the prompt: zero terminates loop, you selected [-68] from the slider.

non-zero number input is -68
At the prompt: zero terminates loop, you selected [94] from the slider.

non-zero number input is 94
At the prompt: zero terminates loop, you selected [40] from the slider.

non-zero number input is 40
At the prompt: zero terminates loop, you selected [0] from the slider.

.. computer has exited from the while loop
The sum of the numbers is 175

224 Chapter 5 Repetition and One-Dimensional Arrays

Modify program Example_1.

(1) Include a counter in the program to count the number of nonzero numbers
input.

(2) Include a statement to calculate the arithmetic mean of the list of numbers
and output this value.

(3) Recompile and run the program.

NOW DO THIS

A screen shot of the running program follows.

A while loop can be used with elements of the avi package to implement some
interesting programs. For example, we can simulate a simple alarm clock. The
Timer class in the avi package contains class methods that return the current
hour, minute, and second as integer values, respectively. In the next example, the
user inputs the time in hours and minutes at the command line, for the time the
alarm clock is expected to wake you. A Memo object stays on the screen, inform-
ing you of the time the alarm is set to wake you.

5.2 While Loop 225

The computer gets the current hours and minutes and compares these values
with the values of the command line hours and minutes in a conditional state-
ment of a while loop. For example:

while (hour != currentHour ||
(hour == currentHour) && (minute != currentMinute))

While this condition is true, the computer writes the current time on the screen, in
hours, minutes, and seconds; it delays for one second, clears the screen, then gets
the current hours and minutes again. This process is continuously repeated until
the while condition becomes false. The while loop is then exited, the computer
writes a message on the screen, and then plays an appropriate alarm sound.

// program to demonstrate a while loop for an alarm clock

import avi.*;

class Example_2
{

static public void main(String[] args)
{

// time of alarm clock is input as two command line
// parameters; these are converted from their string
// values into hour and minute
int hour = new Integer(args[0]).intValue();
int minute = new Integer(args[1]).intValue();

Window screen = new Window("Example_2.java","bold","red",36);
screen.showWindow();

// create audio object as alarm sound
String[] soundFile = {"wakeup.wav"};
Audio wakeUp = new Audio(screen,soundFile);

// display wake up time on memo object
Memo wakeUpTime = new
Memo(screen,"","Alarm set for "+hour+":"+minute,"",false);
wakeUpTime.showMemo();

// get current time from Timer class
int currentHour = Timer.getHour();
int currentMinute = Timer.getMinute();

while (hour != currentHour || (hour == currentHour) &&
(minute != currentMinute))

226 Chapter 5 Repetition and One-Dimensional Arrays

{
// display current time
screen.write(currentHour+":"+currentMinute+":"+

Timer.getSecond()+"\n");
Timer.delay(1);
screen.clearTextArea();
// get current time from Timer class
currentHour = Timer.getHour();
currentMinute = Timer.getMinute();

}
// display message and sound alarm
screen.write("Wakey .. Wakey !!\n");
wakeUp.playSound(0);
Timer.delay(5);
screen.closeWindowAndExit();

}
}

The log file for the program, executed with the command java Example_2 14
46, at time 14:45:33 follows.

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_2.java date: 3/12/2000 time: 2:45:30

===

< memo contained Sound file(s) are loading, there will be a short pause. >
< memo contained Alarm set for 14:46 >
14:45:33
14:45:34
14:45:35
14:45:36
14:45:37
14:45:38
14:45:39
14:45:40
14:45:41
14:45:42
14:45:43
14:45:44
14:45:45
14:45:46

5.3 Do..while Loop 227

5.3 Do..while Loop

The illustration in Figure 5.3 shows another method for repeating statements
within a program. Notice the absence of a decision symbol at the beginning of
the loop, which implies that it is required to execute the statements within the
loop at least once. The decision symbol appears at the end of the loop. Thus the
computer will exit from the loop only when the condition associated with this
symbol is false.

Unlike a while loop, a do..while loop always requires the statements
within the loop to be executed at least once by the computer. The syntax of the
do..while loop follows.

14:45:47
14:45:48
14:45:49
14:45:50
14:45:51
14:45:52
14:45:53
14:45:54
14:45:55
14:45:56
14:45:57
14:45:58
14:45:59
Wakey .. Wakey !!
< audio file wakeup.wav played >

(1) Run the program for yourself.

(2) Change the sound file and wake-up message.

(3) Recompile and run the program.

NOW DO THIS

228 Chapter 5 Repetition and One-Dimensional Arrays

For example,

counter = 1; // initialize loop control variable
do
{

screen.write(counter + "\n");
counter = counter + 1; // increment loop control variable

} while (counter <= 5); // test if variable is within limits

Increment loop
control variable

Initialize loop
control variable

Statements within
the body of the loop

Variable
within
limits ?

NO

YES

Figure 5.3 A loop that is executed at least once

SYNTAX

Do .. while Statement:
do statements(s) while (conditional-expression);

5.3 Do..while Loop 229

The value of counter is initialized to 1; the do..while loop is entered and
the value of counter is output. The counter is incremented by 1 to the value 2;
the condition (counter<=5) is true, so the value of counter is output again.
The process continues while the condition (counter<=5) remains true. When
the counter is incremented to the value 6, the condition (counter<=5)
becomes false and the computer exits from the do..while loop.

Notice that the computer enters the loop without any test for entry being
made. Hence the contents of a do..while loop will always be executed at least
once. There can be either a single statement or a compound statement between
the key words do and while. Like the while loop, the do..while loop may
also use a loop variable controlled by data, as illustrated in Figure 5.4.

Input value of loop
control variable

Statements within
the body of the loop

Variable
NOT =
sentinel ?

NO

YES

Figure 5.4 Loop controlled by data

Modify program Example_1 to:

(1) Input the number of numbers to add together. Insist that it be > 0.

(2) Replace the while loop with a do..while loop, and detect from the infor-
mation given in (1) when all the numbers have been input.

(3) Calculate and display the arithmetic mean of the numbers.

NOW DO THIS

230 Chapter 5 Repetition and One-Dimensional Arrays

As an example of the use of the do..while loop, the die rolling program
from Chapter 3 is extended here. Radio buttons have been included to allow the
user to either continue playing the simulation or quit the program. A
do..while loop has been included to allow the die to be rolled again and again
while the following condition is true:

while (choice.getNameOfButton().equals("Continue?"));

indicating that the user wishes to continue the simulation. The sentinel is the
button labeled "Quit"; therefore, the statement reflects the variable
choice.getNameOfButton() not equal to the sentinel.

// program to simulate rolling a die

import avi.*;

class Example_3
{

public static void main(String[] args)
{

// store the filenames of the images that represent the six
// faces of a die
String[] dieSides = {"die1.jpg","die2.jpg","die3.jpg",

"die4.jpg","die5.jpg","die6.jpg"};

// store the filenames of the sounds for rolling a die and
// announcing the score
String[] sounds = {"rollDie.wav","one.wav","two.wav",

"three.wav","four.wav","five.wav",
"six.wav"};

// store the names of the radio buttons
String[] buttons = {"Continue?","Quit?"};

// create a window pane object and show the window
Window screen = new Window("Example_3.java");
screen.showWindow();

5.3 Do..while Loop 231

// create a filmstrip object of the six faces of a die
final int WIDTH_OF_IMAGE = screen.getWidth()/12;
FilmStrip faces = new
FilmStrip(screen,dieSides,WIDTH_OF_IMAGE,WIDTH_OF_IMAGE);

// create an audio object to play the various sounds
Audio output = new Audio(screen, sounds);

// create radio buttons object to continue play
RadioButtons choice = new
RadioButtons(screen,"What next?",buttons);

// create a die object
Die luckyCube = new Die();
int value;

do
{

value = luckyCube.rollDie();

// play sound of die being rolled
output.playSound(0);
Timer.delay(1);

// show face of die
faces.showFrame(value-1);

// announce score on die
output.playSound(value);

// show radio buttons
choice.showRadioButtons();

} while (choice.getNameOfButton().equals("Continue?"));

screen.closeWindowAndExit();
}

}

A screen shot of the running program follows.

232 Chapter 5 Repetition and One-Dimensional Arrays

5.4 Increment/Decrement Operators

At this point in the chapter it is worth digressing to the topic of incrementing
and decrementing values, in particular in the context of control variables found
in loops.

If you want to increase the value of an integer variable counter by 1, then
you write

counter = counter + 1

The same result can be achieved by writing

counter++

Similarly, if you wanted to decrease the value of counter by 1, then you would write

counter = counter - 1

The same result can be achieved by writing

counter--

5.4 Increment/Decrement Operators 233

These new operators are known as the increment and decrement postfix operators;
they are written after the variables as ++ and --, respectively, and can be used to
increase or decrease an integer numeric variable or a character variable by 1. The
increment and decrement postfix operators are useful within loops, as the next
program illustrates. The Java language also has increment and decrement prefix
operators, but they are not used in this book.

The following program writes a character and its corresponding decimal
Unicode value to the screen.

Two integer values between the numbers 32 and 127 are input via sliders. If
the first value is less than the second, the computer will write to the screen all
the Unicode characters with values that fall between these two numerical values,
taken in ascending order. However, if the first value is greater than or equal to
the second, then the Unicode characters and their corresponding numerical val-
ues are displayed in descending order. Notice how casting a Unicode to a char
will result in a character being written to the screen.

To allow the whole process to be repeated, the program code is contained
within a do..while loop.

// program to demonstrate the use of the while, do..while loops, and
// increment and decrement operators

import avi.*;

class Example_4
{

static public void main(String[] args)
{

String[] buttons = {"CONTINUE?","EXIT LOOP?"};

// create window, sliders and radio buttons objects
Window screen = new Window("Example_4.java","bold","blue",18);
Slider inputFirstCode = new
Slider(screen,"First decimal Unicode",32,127,1);
Slider inputLastCode = new
Slider(screen,"Last decimal Unicode",32,127,1);
RadioButtons choice = new
RadioButtons(screen,"What next?",buttons);

int firstCode, lastCode, counter;

screen.showWindow();

do
{

// input range of Unicodes from two sliders

234 Chapter 5 Repetition and One-Dimensional Arrays

inputFirstCode.showSlider();
firstCode = inputFirstCode.getValue();
inputLastCode.showSlider();
lastCode = inputLastCode.getValue();

screen.clearTextArea();
screen.write("Decimal Unicode\tCharacter\n\n");
if (firstCode < lastCode)
{

// display table of Unicodes and
// respective characters
// in ascending order of Unicode
counter = firstCode;
while (counter <= lastCode)
{

screen.write(counter+"\t\t"+
(char)counter+"\n");

counter++;
}

}
else
{

// display table of Unicodes and
// respective characters
// in descending order of Unicode
counter = firstCode;
while (counter >= lastCode)
{

screen.write(counter+"\t\t"+
(char)counter+"\n");

counter--;
}

}

choice.showRadioButtons();
}while (choice.getNameOfButton().equals("CONTINUE?"));

}
}

A screen shot of the running program follows.

5.5 For Loop 235

SYNTAX

For Loop:
for (expression1 ; expression2 ; expression3) statements(s)

5.5 For Loop

The syntax of a for statement in Java follows:

where expression1 represents the declaration (if necessary) and initialization of
the loop control variable; expression2 is a condition under which repetition will
continue, and expression3 is a statement to increment or decrement the loop
control variable. For example

for (int counter = 1; counter <= 5; counter++)
{

screen.write(counter + "\t");
}

236 Chapter 5 Repetition and One-Dimensional Arrays

The output to the screen from this code is

1 2 3 4 5

Note that since the integer variable counter is declared “inside” the for loop, its
scope of existence is only within the for loop, and it cannot be accessed outside
of that scope. This rule helps protect the counter variable from being misused.

The for statement can be regarded as a shorthand version of the following
while loop.

expression1;
while (expression2)
{

statements(s);
expression3;

}

The while loop and the for loop are interchangeable in that both types of
loops can be used for counting. The following code produces exactly the same
output as the for loop example.

int counter = 1;
while (counter <= 5)
{

screen.write(counter + "\t");
counter++;

}

The expressions in a for loop are optional.

1. If expression1 is omitted, the initialization (and declaration) of the loop con-
trol variable must take place before entry into the loop.

2. If expression2 is omitted, then the loop does not terminate unless it contains
a break statement.

3. If expression3 is omitted, then increasing or decreasing the loop variable
must take place within the body of the loop.

4. If all three expressions are omitted, then you will create an infinite loop!

By omitting all three expressions in a for loop, it is possible to set up an infinite loop—one
that repeats without ending! Unless you deliberately want your program to run forever, such

programming practice should be avoided.

1i

5.5 For Loop 237

For example, the following segment of code continues to print the message until
the user interrupts the running program by either closing the window, or open-
ing the MSDOS window/terminal window and pressing the Ctrl (control) and
C keys simultaneously.

for (; ;)
{

screen.write("forever and ever ... ");
}

Notice that even when the expressions are omitted in for loops, the semicolon
separators must be present.

The following program demonstrates how the expressions of the for loop
may be used (or abused, in the case of an infinite loop). The program demon-
strates counting from 1 to 5 (twice), from 5 to 1 twice, then continuously dis-
playing the current time of day.

// program to demonstrate counting

import avi.*;

class Example_5
{

static public void main(String[] args)
{

Window screen = new
Window("Example_5.java","bold+italic","red",72);
screen.showWindow();

// count from 1 to 5, display each value with a
// timed delay of 1 second between each value
for (int counter = 1; counter <= 5; counter++)
{

screen.write(counter);
Timer.delay(1);
screen.clearTextArea();

}

screen.write(".. and again ..");
Timer.delay(1);
screen.clearTextArea();

int counter = 1; // (1) initialization
for (; counter <= 5; counter++)
{

238 Chapter 5 Repetition and One-Dimensional Arrays

screen.write(counter);
Timer.delay(1);
screen.clearTextArea();

}

// count from 5 to 1, display each value with a
// timed delay of 1 second between each value
screen.write(".. counting backwards ..");
Timer.delay(1);
screen.clearTextArea();

for (counter = 5;; counter--)
{

if (counter == 0) break; // (2) condition to exit
screen.write(counter);
Timer.delay(1);
screen.clearTextArea();

}

screen.write(".. and again ..");
Timer.delay(1);
screen.clearTextArea();

for (counter = 5; counter > 0;)
{

screen.write(counter--); // (3) decrement loop control
Timer.delay(1);
screen.clearTextArea();

}

// set up an infinite loop and display the value
// of the time once every second
screen.write(".. about time too ..");
Timer.delay(2);
screen.clearTextArea();

for (;;) // (4) infinite loop
{

screen.write("\n"+Timer.getTime());
Timer.delay(1);
screen.clearTextArea();

}
}

}

5.6 Which Loop? 239

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_5.java date: 3/12/2000 time: 4:26:48

===

12345.. and again ..12345.. counting backwards ..54321.. and again ..54321..
about time too ..
4:27:14
4:27:15
4:27:16
4:27:17
4:27:18
4:27:19
4:27:20
4:27:21
4:27:22
4:27:23
4:27:24

Modify program Example_1.

(1) Input the number of numbers to add together.

(2) Replace the while loop with a for loop, and detect from the information
given in (1) when all the numbers have been input.

(3) Calculate and display the arithmetic mean of the numbers.

NOW DO THIS

The log file of the executed program follows.

5.6 Which Loop?

By now you should understand the syntax and semantics of the three loop struc-
tures while, do..while, and for. Any task that can be accomplished with one
of these loop constructs can also be accomplished with either of the others—we
say that they have equivalent power. However, each of the approaches expresses
the loop control in a different fashion, and in any given programming situation
that requires a loop there is usually a “best” choice for loop structure.

240 Chapter 5 Repetition and One-Dimensional Arrays

While
The first statement in a while loop contains a condition to exit from the loop.
This condition guards entry into the loop. If the guarding condition evaluates to
false, then entry into the loop will be denied, and the loop body will not be exe-
cuted at all. Whenever there is the possibility that you do not want the program
to execute the statements within the body of the loop, you should use the while
loop structure.

In this example an input data string from a dialog box is used to control
entry into the loop.

input.showDialogBox();
String inputData = input.getString();
while (! inputData.equals(sentinel))
{

.

.

input.showDialogBox();
inputData = input.getString();

}

Notice that when data is used to control entry into a loop, it is necessary to read
ahead for data in order to test the guarding conditional statement. It is also nec-
essary to include a second read statement within the body of the loop to supply
data for testing the conditional statement.

Do..while
The feature of this loop is that it is not guarded by any condition, and the com-
puter will always execute the statements within the loop at least once. This fea-
ture can be useful when validating data. In the following example, the body of
the loop will continue to be executed until a number that lies within the range
0..100 is input from a dialog box.

do
{

screen.write("input a number in the range 0..100 ");
input.showDialogBox();
number = input.getInteger();

} while (number < 0 || number > 100);

For
When a loop is to be controlled by some type of counter and both the initial and
final values of the counter are known before the execution of the loop begins,
the best choice is the for loop. In the following example, we want to write out
the squares of the first 10 integers.

5.7 Arrays Revisited 241

start = 1; finish = 10;
for (int counter = start; counter <= finish; counter++)
{

screen.write(counter + "\t" + (counter*counter));
}

5.7 Arrays Revisited

Consider for a moment how you would store five integer values in the memory
of the computer. One solution is to create five variable names and assign a value
to each variable. For example,

int number1 = 54;
int number2 = 26;
int number3 = 99;
int number4 = -25;
int number5 = 13;

If you adopted the same approach to storing 50 integer values, then the coding
would become quite tedious. A better approach is to store the numbers in a one-
dimensional array. This will lead to a reduction in the amount of code you need
to write.

What do we already know about an array? A one-dimensional array was first
introduced in Chapter 2 in the context of passing command-line arguments to
the main method of a class. You may recall the following points from the work
covered in the previous three chapters.

■ An array is an implicit class of Java. In other words, Java arrays are objects.

■ You may visualize an array as a set of numbered pigeon holes, each contain-
ing data of the same type.

■ The first pigeon hole is always numbered as 0 (zero). Subsequent holes are
numbered 1, 2, etc. A programmer must be careful of “off by one” errors
when using arrays.

■ An array may store both primitive data and objects such as an array of inte-
gers or an array of strings.

■ The declaration of an array has the format type[] arrayName and may be
initialized with data at the point of declaration; for example:

String[] reply = {"continue","quit"};
int[] chosenCities = {0,2,5};

■ The length of an array may be found by using the implicit instance variable
length. In the examples above, reply.length is 2 and
chosenCities.length is 3.

242 Chapter 5 Repetition and One-Dimensional Arrays

■ Each element of data stored in an array can be accessed by the name of the
array and the numbered index indicating the position of the data within the
array. For example, args[0] and args[1] represent the first and second ele-
ments of the array declared as String[] args as the formal parameter of
the main method.

5.8 Declaring and Initializing One-Dimensional
Arrays

Three Methods
There are three approaches to declaring and initializing arrays. We briefly intro-
duce them here, and revisit each of them later in examples. To simplify our
approach, let’s concentrate on declaring and initializing an integer array to hold
the five values 54, 26, 99, �25, and 13.

Method 1 Declaring the array and instantiating the array as separate steps. As
with other Java objects, we can declare an array with one statement and instanti-
ate it later using the new operation.

Method 2 As with other Java objects, we can combine the declaration and
instantiation of an array into a single statement. Methods 1 and 2 are shown in
the following code fragments:

Method 1: Method 2:

int[] numbers; int[] numbers = new int[5];
numbers = new int[5];

Figure 5.5 illustrates the results of these statements. The first part of the figure
shows what memory looks like after statement 1 of Method 1 is executed. The
second part of the figure shows what memory looks like in either case, after the
new command is used. Notice that the int[] numbers statement has created
only one memory location to represent the identifier numbers. This location is
automatically initialized to the value null indicated by a slash in the memory
location for numbers. In order to allocate space for storing integers, it is neces-
sary to use the new keyword and specify an amount of memory to allocate for
the storage of, in this example, five integers. In the second part of Figure 5.5,
each allocated memory cell is indexed with a value from 0 to 4, and the contents
of the five cells have automatically been initialized to zero. Notice that the five
cells are pointed at or referenced by the identifier numbers.

The syntax for the declaration of a one-dimensional array follows.

5.8 Declaring and Initializing One-Dimensional Arrays 243

Once the array has been instantiated, values can be inserted into the array
using the assignment statement. As you might have guessed from our previous
use of the args array, we can reference a specific element of an array by using
the name of the array object, followed by the index of the array we wish to refer-
ence enclosed in brackets. So, the following code will “finish” the task we set
ourselves for both Method 1 and Method 2 of array declaration:

numbers[1] = 54;
numbers[2] = 26;
numbers[3] = 99;
numbers[4] = -25;
numbers[5] = 13;

Figure 5.6 shows how the array looks after the assignment statements have been
executed.

/

int[] numbers;

numbers

0

0

0

1

0

2

0

3

0

4

int[] numbers = new int[5];

numbers

Figure 5.5 Declaration of an array of integers

SYNTAX

One-Dimensional Array Declaration:
type-specifier [] array-name =
new type-specifier[number-of-cells];

54

0

26

1

99

2

-25

3

13

4numbers Index

Figure 5.6 Conceptual representation of numbers in an array

244 Chapter 5 Repetition and One-Dimensional Arrays

SYNTAX

One-Dimensional Array Declaration and Initialization:
type-specifier [] array-name = { list of numbers };

Method 3 This is probably the easiest approach to declaring, instantiating,
and initializing an array object. It combines all three into a single Java state-
ment. As we have done for other Java types and objects, we can provide the ini-
tial set of values on the same line as the declaration, as follows:

int[] numbers = {54,26,99,-25,13}

Since the compiler can count the number of items of data in the list, there is no
need to explicitly state how much memory to allocate in order to store the num-
bers. Again, Figure 5.5 illustrates how to conceptualize the storage of the five
numbers in the array.

The syntax for the declaration of a one-dimensional array is modified as follows.

In program Example_6 that follows, the array numbers is declared and initial-
ized as in Method 3. The numbers in the array are then displayed on the screen.

import avi.*;

class Example_6
{

public static void main(String[] args)
{

Window screen = new
Window("Example_6.java");
screen.showWindow();

// store integers in a one-dimensional array
int[] numbers = {54,26,99,-25,13};

// display numbers
screen.write("cell 0 contains "+numbers[0]+"\n");
screen.write("cell 1 contains "+numbers[1]+"\n");
screen.write("cell 2 contains "+numbers[2]+"\n");
screen.write("cell 3 contains "+numbers[3]+"\n");
screen.write("cell 4 contains "+numbers[4]+"\n");

}
}

5.9 Using Arrays 245

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_6.java date: 3/12/2000 time: 4:29:32

===

cell 0 contains 54
cell 1 contains 26
cell 2 contains 99
cell 3 contains -25
cell 4 contains 13

The contents of the log file from the program being executed follows.

5.9 Using Arrays

The original idea of introducing an array to store integers was to reduce the
amount of coding required to assign numbers to memory and output the num-
bers from memory. The previous program hardly inspires confidence that the
original idea can be implemented! All it proves is that the same name numbers,
using a different index value from 0 through to 4, can be used in place of the five
different names. The program was introduced only to show you that it is possi-
ble to explicitly access any cell in the array.

Suppose we wanted to write a program where the values to be placed in the
array were provided by the user through a slider box. We could continue to use
the brute-force approach as in the previous program, that is, writing explicit
code with a literal index for each element of the array. But that is not a very ele-
gant approach, especially if the array is large. To reduce the amount of coding, it
is necessary to replace the explicit use of the index by a control variable identi-
fier. Instead of explicitly coding numbers[0], numbers[1], numbers[2], num-
bers[3], and numbers[4], it is far easier to use numbers[index] and embed
this statement in a for loop that changes the value of index from 0 to 4. For
example, integers can be input from a slider and stored in an array using

for (int index=0; index != 5; index++)
{

screen.write("Input number into cell "+index+"\n");
input.showSlider();
screen.clearTextArea();
numbers[index] = input.getValue();

}

246 Chapter 5 Repetition and One-Dimensional Arrays

A good programming practice is to replace the numeric literal that defines the number of
cells in the array with a constant. Consequently, if the size of the array changes, the only

statement in the program that needs to be modified is the declaration of the constant.
However, whenever possible you should use the implicit instance variable length to specify the
size of an array.

1i

and the contents of each cell of the array can be displayed on the screen using

for (int index=0; index != 5; index++)
{

screen.write("Cell "+index+" contains "+ numbers[index]+"\n");
}

where the array numbers was declared in Figure 5.6. In this declaration, the
number of cells in the array was explicitly coded as 5.

The declaration should be modified to include

// size of array
static final int SIZE = 5;

// declaration of the array
int[] numbers = new int[SIZE];

The next program demonstrates using a constant SIZE to define the size of the
array, and a loop control variable index to refer to the position of the individual
cells within the array. Notice in this program that the constant SIZE is also used
in the for loops to detect when the loop control variable index is about to go
out of range.

import avi.*;

class Example_7
{

public static void main(String[] args)
{

Window screen = new
Window("Example_7.java","bold","blue",36);
screen.showWindow();

Slider input = new Slider(screen,"Number?",-100,+100,1);

// declare constant size of array
final int SIZE = 5;

5.9 Using Arrays 247

// declare one-dimensional array
int[] numbers = new int[SIZE];

// input numbers
for (int index=0; index != SIZE; index++)
{

screen.write("\n\n\tinput number into cell "+index+"\n");
input.showSlider();
screen.clearTextArea();
numbers[index] = input.getValue();

}

// display contents of the array
for (int index=0; index != SIZE; index++)
{

screen.write("\tcell "+index+" contains "+
numbers[index]+"\n");

}
}

}

A screen shot of the running program follows.

248 Chapter 5 Repetition and One-Dimensional Arrays

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_7.java date: 3/13/2000 time: 6:2:13

===

input number into cell 0
At the prompt: Number?, you selected [-77] from the slider.

input number into cell 1
At the prompt: Number?, you selected [80] from the slider.

input number into cell 2
At the prompt: Number?, you selected [4] from the slider.

input number into cell 3
At the prompt: Number?, you selected [60] from the slider.

input number into cell 4
At the prompt: Number?, you selected [-89] from the slider.

cell 0 contains -77
cell 1 contains 80
cell 2 contains 4
cell 3 contains 60
cell 4 contains -89

The contents of the log file from the program being executed follows.

The use of a for statement to control the index to an array is not confined
to input and output but can also be used to compare data between cells. In this
next program, five numbers are stored in an array, and the contents of the array
are inspected to find the largest number.

The for loop controls the index so that it is possible to gain access to consec-
utive items of data and compare each item with the largest number found so far.

largest = numbers[0];
for (int index=1; index != SIZE; index++)

if (numbers[index] > largest) largest = numbers[index];

The variable largest is assigned the first value in the array. The control vari-
able identifier is then set to access the remaining cells in the array. If a number

5.9 Using Arrays 249

in one of these cells is greater than the current value of the variable largest,
then largest is assigned this value.

import avi.*;

class Example_8
{

public static void main(String[] args)
{

Window screen = new
Window("Example_8.java","bold","blue",36);
screen.showWindow();

Slider input = new Slider(screen,"Number?",-100,+100,1);

// declare constant size of array
final int SIZE = 5;
// declare one-dimensional array
int[] numbers = new int[SIZE];

// input numbers
for (int index=0; index != SIZE; index++)
{

screen.write("\n\n\tinput number into cell "+index+"\n");
input.showSlider();
screen.clearTextArea();
numbers[index] = input.getValue();

}

// display contents of the array
for (int index=0; index != SIZE; index++)
{

screen.write("\tcell "+index+" contains "+
numbers[index]+"\n");

}

// find largest number in array
int largest = numbers[0];
for (int index=1; index != SIZE; index++)

if (numbers[index] > largest) largest = numbers[index];

screen.write("\n\tlargest number in the array is "+largest);
}

}

250 Chapter 5 Repetition and One-Dimensional Arrays

A screen shot of the running program follows.

In the previous examples, the size of the array was stated at the time of writing
the program. This need not always be the case. In Java it is possible to postpone
assigning a value for the size of an array until program execution. By doing this
you create a dynamic array and hence tailor the storage requirements to the
amount of data available, as shown in Example_9. In this program the user
enters the size of the array and each of the numbers to be inserted into the array,
and the program outputs the arithmetic mean of the set of numbers.

import avi.*;

class Example_9
{

public static void main(String[] args)
{

Window screen = new Window("Example_9.java","bold","blue",36);
DialogBox inputSize = new DialogBox(screen,"Size of array?");
Slider input = new Slider(screen,"Number?",-100,+100,1);

5.9 Using Arrays 251

int sizeOfArray;
int sum = 0;

screen.showWindow();

// input size of array
do
{

inputSize.showDialogBox();
sizeOfArray = inputSize.getInteger();

} while (sizeOfArray < 1);

// declare one-dimensional array
int[] numbers = new int[sizeOfArray];

// input numbers
for (int index=0; index != sizeOfArray; index++)
{

screen.write("\n\n\tinput number into cell "+index);
input.showSlider();
screen.clearTextArea();
numbers[index] = input.getValue();

}

// display contents of the array
for (int index=0; index != sizeOfArray; index++)
{

screen.write("\tcell "+index+" contains "+
numbers[index]+"\n");

}

// find arithmetic mean of numbers in array
for (int index=0; index != sizeOfArray; index++)
{

sum = sum + numbers[index];
}

screen.write("\n\tarithmetic mean of numbers in array is "+
(float)sum/sizeOfArray);

}
}

A screen shot of the running program follows.

252 Chapter 5 Repetition and One-Dimensional Arrays

Using Example_8 and Example_9 for reference, write a program
to:

(1) Declare an array of maximum size 20 to store real numbers.

(2) Input any number of real numbers up to a maximum of 20, and store these
numbers in the array. Terminate the numbers being input with a sentinel of
zero.

(3) Find and display the maximum and minimum numbers in the array.

(4) Calculate and display the arithmetic mean of the numbers in the array.

NOW DO THIS

Let’s review the following points regarding one-dimensional arrays.

■ The contents of the array must be of the same data type. In other words, an
array can contain all integers or all reals or all characters or all strings, but
not a mixture of types.

■ Each item in the array is stored in a separate cell. If an array contained five
integers, then each integer would occupy a single cell.

Case Study: Palindrome 253

■ Each cell has a unique location value that shows the cell’s position within the
array. This location is known as an index and starts at value 0.

■ The array is given one name, no matter the number of items it contains.

■ Before an array can be used, it must be declared like any other variable.

■ Like other objects, an array must also be instantiated, either with the new
operator or from a set of initial values provided by the programmer on the
declaration line.

■ An item of data within a cell is accessed by using the name of the array fol-
lowed by the position, index, or subscript, within square brackets.

CASE STUDY

Palindrome

Statement of the Problem Write a program to test for a word being a palindrome, that is, a
word spelled the same way forward and backward.

Identification of Classes and Methods
A noun analysis of the problem identifies three candidate classes—program, word, and palin-
drome. Of these, program and word appear to be the most plausible. The palindrome is what we
are testing for, and might be a better candidate as a method. The class program is Example_10
and contains statements to test the constructor and methods of the class Word.

A verb analysis on the problem identifies two candidate methods—write and test. Of these,
test is the most obvious, and since you are testing a word for being a palindrome, we will elect to
call this method palindrome. Figure 5.7 illustrates the class representation.

Algorithm Development
The first question to ask is, How should we analyze individual characters in a string? Java
classes are very comprehensive, and it should come as no surprise that there is a method in the
String class that will convert a string to individual characters stored in separate cells of a one-
dimensional array. The method is toCharArray(). To convert a string contained by the object
datum to individual characters stored in the one-dimensional array characterArray, the fol-
lowing code is required.

char[] characterArray = datum.toCharArray();

254 Chapter 5 Repetition and One-Dimensional Arrays

In testing a word for being a palindrome, is the word Radar equivalent to the word RADAR? If it
is meant to be the same, then all the characters in the word must be converted to uppercase. The
statement to store a word as single characters in each cell of an array can be modified to capital-
ize all alphabetic characters:

char[] characterArray = datum.toUpperCase().toCharArray();

This statement first creates a temporary string consisting of the characters of datum in all
uppercase, then creates an array of characters out of the separate characters of this uppercase
string, and finally assigns the reference in the variable characterArray to “point to” this array
of characters.

We can now start to piece together the class Word as follows.

public class Word
{

// instance variable
private char[] characterArray;

// constructor
public Word(String datum)
{

characterArray = datum.toUpperCase().toCharArray();

Example_10Word

-characterArray

+Word
+palindrome

 +main

Figure 5.7 UML representation of classes

Case Study: Palindrome 255

}

.

.
}

R

0

A

1

D

2

A

3

R

4characterArray

left right

R

0

A

1

D

2

A

3

R

4characterArray

left right

R

0

A

1

D

2

A

3

R

4characterArray

left
right

Figure 5.8 Comparison of characters in the array

The method used to test the datum for being a palindrome is to inspect the characters at
either end of the word. If these characters are the same, then the next two characters at either
end of the word are compared. The comparisons continue until there is no match between the
characters or there are no further comparisons possible. The movement of the indexes is shown
in Figure 5.8. Notice that when both indexes indicate the same array element, there is really no
need to do a character comparison since you would just be comparing a character to itself.

In assigning left and right to the first and last indexes in the array, it is necessary to know
the length of the array. In this example the expression characterArray.length will return the
value 5, since there are five cells in the array. Assigning values to left and right becomes

left = 0;
right = characterArray.length-1;

256 Chapter 5 Repetition and One-Dimensional Arrays

Since the array is indexed from 0 (zero) it is necessary to deduct 1 from the length of the
array in calculating a value for the right index.

The pseudocode for the algorithm to test a word for being a palindrome can be expressed
as follows.

1. initialize left and right indexes
2. while left index is less than right index
3. if left character equals right character
4. move left index one cell to the right
5. move right index one cell to the left
6. else
7. characters do not match
8. characters match

The pseudocode can be converted into the following instance method.

public boolean palindrome()
{

int left=0;
int right = characterArray.length-1;

// compare characters in the word
while (left < right)
{

if (characterArray[left] == characterArray[right])
{

left++;
right--;

}
else
{

return false;
}

}

return true;
}

Notice that as soon as a mismatch of characters is encountered, the return false statement
will be executed, ending the method and returning the value false. But if no mismatch of
characters is ever encountered, then the return true statement will be executed instead.

Testing
This is a good chance to discuss test data selection. Identifying a reasonable set of test data
for desk checking and program run-time checking is crucial for successful software develop-

Case Study: Palindrome 257

ment. Normally, it is impossible to test a program on all potential inputs, so we must think care-
fully about the test cases we have time to use.

If possible, consider different dimensions of the input to your program and try to identify
subclasses along each of those dimensions. The subclasses are meant to group together similar
test cases so that if your program works correctly for a few of the test cases in a subclass, it will
probably work correctly for all the rest of the possible input from that subclass.

In the current example we can list three dimensions of the input, with subclasses, as follows:

1. Length of word—1, 2, 3, 4, ..., 20 characters long; alternatively, we could identify the subclasses as
long, short, even number of letters, odd number of letters.

2. Expected result—palindromes and nonpalindromes.
3. Case used—all lowercase, all uppercase, mixed case.

This suggests the following robust set of test cases, with the palindromes on the left:

a aaA az
b poop bat
z radar suds
aa RotaTOR sUds
bb AmanAPlanACanalPanama Java

The test data we will use to desk check the instance method palindrome are radar and suds.
The desk check would be as follows:

palindrome() true false

datum radar suds

characterArray RADAR SUDS

left 0 1 2 0 1

right 4 3 2 3 2

(left<right)? true true false true true

characterArray[left] R A S U

characterArray[right] R A S D

(characterArray[left] ==

characterArray[right])? true true true false

In the first test, the word radar is a palindrome, and the characters match; in the second test,
the word suds is not a palindrome, since the characters u and d do not match.

A listing of the complete Word class follows.

258 Chapter 5 Repetition and One-Dimensional Arrays

public class Word
{

// instance variable
char[] characterArray;

// constructor
/**
The Word class enables an object that represents a string
of characters to be created.
@param datum is a string of characters
*/
public Word(String datum)
{

characterArray = datum.toUpperCase().toCharArray();
}

// instance method
/**
Inspects the characters of a word and determines whether the
word is a palindrome.
@return true if the word is a palindrome, otherwise returns false.
*/
public boolean palindrome()
{

int left=0;
int right = characterArray.length-1;

// compare characters in the word
while (left < right)
{

if (characterArray[left] == characterArray[right])
{

left++;
right--;

}
else
{

return false;
}

}

return true;
}

}

Case Study: Palindrome 259

The class Example_10 is used to test the constructor and instance method of the class Word.
The pseudocode design for this class follows.

1. create and show window object screen
2. create dialog box object to input word
3. create radio buttons object to continue or quit
4. do
5. show dialog box
6. get input string from dialog box
7. instantiate word object from input string
8. if word is a palindrome
9. display message to confirm

10. else
11. display message to reject
12. show radio buttons
13. while reply to continue
14. close window and exit

From the pseudocode it is possible to determine which classes Example_10 is dependent
upon for its implementation. These are depicted in Figure 5.9.

Example_10 Window

Dialog

RadioButtons

Word

Figure 5.9 UML representation of dependencies

260 Chapter 5 Repetition and One-Dimensional Arrays

// case study - palindrome

import avi.*;

class Example_10
{

public static void main(String[] args)
{

Window screen = new
Window("Example_10.java","bold+italic","black",24);
screen.showWindow();

DialogBox inputWord = new DialogBox(screen,"Word?");

String[] reply = {"continue","quit"};
RadioButtons buttons = new
RadioButtons(screen,"What next?",reply);

String datum;
Word word;

do
{

// input word
inputWord.showDialogBox();
datum = inputWord.getString();
word = new Word(datum);

// check for palindrome
if (word.palindrome())

screen.write(datum+" is a palindrome\n");
else

screen.write(datum+" is NOT a palindrome\n");

// request to continue or quit
buttons.showRadioButtons();

}while (buttons.getNameOfButton().equals("continue"));

screen.closeWindowAndExit();
}

}

A screen shot of the running program follows.

5.10 Our Last AVI Class: Checkboxes 261

The dictionary definition of a palindrome is “a word or phrase
that reads the same backwards as forwards (e.g. rotator, nurses run). Modify the
Case Study: Palindrome to cater for phrases as well as individual words being read
from a text file.

NOW DO THIS

5.10 Our Last AVI Class: CheckBoxes

The final avi class is the CheckBox class. Whereas the RadioButtons class
allowed for only one selection from a list of items, the CheckBox class will allow
for the selection of more than one item from a set list of items.

The CheckBox Class
A CheckBox object is illustrated in Figure 5.10. In the sections that follow you
will be shown how to include a currency sign for the country in which you are
using an application program. Figure 5.10 was the output from a program being
run in the UK. As you will see later, if you run the same program in the USA
then the £ currency sign will automatically be replaced by a $ currency sign.

The CheckBox class contains the following constructor and public instance
methods.

262 Chapter 5 Repetition and One-Dimensional Arrays

Figure 5.10 A CheckBox object from the avi package

public class CheckBoxes
{

public CheckBoxes(Window parent,
String prompt,
String[] itemsInList);

public void showCheckBoxes();
public boolean[] getCheckedBoxes();

}

To create a check-box object you must use the class constructor that requires
three items of data in the formal parameter list:

parent—a Window type that specifies the container on which to display a
check box object.

5.10 Our Last AVI Class: Checkboxes 263

prompt—a string that is used as a cue to inform the user of the nature of the selec-
tion. For example, in Figure 5.10 the cue is “Ben’s Breakfast Bar Menu.”

itemsInList—a string array containing a list of all the names of the check
boxes. For example, in Figure 5.10, if you only wanted the names of the
food and beverages displayed and not the prices, the itemsInList argu-
ment would have been declared as the array:

String[] food = {"Eggs", "Blueberry Pancakes", "Bagels with Cream Cheese",
"English Muffin", "Yogurt", "Corned Beef Hash", "Toast",
"Fries", "Tea", "Coffee", "Hot Chocolate"};

Assuming that you have already created a screen window and the food array,
then the CheckBoxes constructor may be coded as:

CheckBoxes menu = new CheckBoxes(screen,"Ben's Breakfast Bar Menu",food);

The check boxes are displayed on the screen using the instance method
showCheckBoxes(); for example:

menu.showCheckBoxes();

After using the mouse-pointer to check (or uncheck) any number of items, the
check-boxes window is closed to indicate that data selection is complete. The
selected items are returned as being true within a boolean array by the
instance method getCheckedBoxes(). The boolean array contains the same
number of cells as there are items in the check-boxes list, with the first cell rep-
resenting the first item in the list, the second cell the second item in the list, and
so on. For each item selected in the check-boxes list, the corresponding cell in
the boolean array is set to true (those not selected remain at false).

If a boolean array is declared as follows:

boolean[] choice;

then this array may be used to represent the selected items from the check boxes
by the statement:

choice = menu.getCheckedBoxes();

In Figure 5.10, items that have been checked for selection are in the first, sev-
enth, and ninth positions in the check boxes list. The cells in the corresponding
array choice will be set to true, representing this selection. Remember that
array indexing begins with 0. See Figure 5.11.

We can use the following code to inspect each cell of the array choice and
display on the screen which of the boxes have been checked.

264 Chapter 5 Repetition and One-Dimensional Arrays

for (int index=0; index != food.length; index++)
{

if (choice[index]) screen.write(food[index]+"\n");
}

The above examples are used in our next case study.

5.11 Formatting Numbers for Output

To be useful, the output from a program should be easy to read. For example, if
a program outputs a large number, it might important for the number to be sep-
arated by commas at the appropriate places.

There are several standard Java library classes to help us format output. In
this section we will take a brief look at one of these: the NumberFormat class.
You can study this class in detail by examining the documentation available with
the Java 2 SDK environment.

Contents of boolean array
set true for each box that is
checked (ticked)

0 true

1 false

2 false

3 false

4 false

5 false

7 false

8 false

10 false

6 true

9 true

Figure 5.11 An illustration of how the selected check boxes are represented by a boolean
array

5.11 Formatting Numbers for Output 265

The NumberFormat class helps us format numbers in a local, specific way. It
is an abstract class, which means we will not instantiate an instance of the class
using the new command. Instead, we will obtain a number-formatting object
through one of the static class methods provided by the class. We will learn
more about abstract classes in the next chapter. For now it will suffice to learn
how to use the NumberFormat class to let us format the output of money and
percentage data.

Three steps are needed for using the NumberFormat class:

1. Import the class from the standard text library.

2. Obtain a number formatting object using one of the “get” methods.

3. Apply the number formatting object to a specific number.

Each of these will be explained in turn, and they are all shown in Example_11 .
To import the class, simply include the statement

import java.text.NumberFormat;

at the top of your program.
There are several methods exported from the NumberFormat class that can

be used to obtain a number-formatting object. The two we are most interested
in are the getPercentInstance and the getCurrencyInstance methods.
These will return an object that allows us to format numbers according to the
local conventions for printing percentages or currency. For example, if the lat-
ter method is used on a computer in the United States, the final printed
results will be in dollars ($), but if it is used in the United Kingdom, the
results will be in pounds (£). An example of a statement to establish currency
formatting is

NumberFormat outFormat = NumberFormat.getCurrencyInstance();

Once the number formatting object is obtained, it can be used to format
numbers by passing the number to be formatted to its format method as follows:

outFormat.format(456.783f);

which will take the number 456.783 of type float and change it into a string
formatted according to local currency standards.

Study Example_11 and its output to see how all these things work together.

// program to test output format options

import avi.*;
import java.text.NumberFormat;

266 Chapter 5 Repetition and One-Dimensional Arrays

class Example_11
{

public static void main(String[] args)
{

// create a window object screen
Window screen = new Window("Example_11.java","bold","black",24);

screen.showWindow();

float a = 52435.26f, b = 12f, c = -132.5f, d = 0.1f;

screen.write("No formatting");
screen.write("\n" + a);
screen.write("\n" + b);
screen.write("\n" + c);
screen.write("\n" + d);
screen.write("\n\n");

NumberFormat myMoney = NumberFormat.getCurrencyInstance();

screen.write("Formatted as currency");
screen.write("\n" + myMoney.format(a));
screen.write("\n" + myMoney.format(b));
screen.write("\n" + myMoney.format(c));
screen.write("\n" + myMoney.format(d));
screen.write("\n\n");

NumberFormat myPercent = NumberFormat.getPercentInstance();

screen.write("Formatted as percent");
screen.write("\n" + myPercent.format(a));
screen.write("\n" + myPercent.format(b));
screen.write("\n" + myPercent.format(c));
screen.write("\n" + myPercent.format(d));

}
}

The appearance of the output from Example_11 will depend on the configuration
of your local computer. Compile and run the program to see how it appears. The
NumberFormat class will be used in the case study in the following section.

Case Study: Ben’s Breakfast Bar 267

CASE STUDY

Ben’s Breakfast Bar
Statement of the Problem The menu at Ben’s Breakfast Bar is illustrated in Figure 5.12.
Write a program to allow a customer to select items from the menu and to place an order for
breakfast and be given the tab (bill) for the meal.

Identification of Classes and Methods
The noun and verb analysis works well on this problem, as you are about to discover. The list of
nouns from the statement of the problem are menu, program, customer, order, breakfast, tab, and
meal. Objects in Ben’s Breakfast Bar that you can see with your eyes are a customer (person); a
menu (either displayed on a board or as individual menus at tables); an order (piece of paper con-
taining an itemized request for food); breakfast and meal both refer to the food being served; and
the tab at the end of the meal.

In this problem we are not recording any data about a customer. Had we wanted to record
customer details, then customer would have been a viable class, however, in this example the
customer’s details are not required and, therefore, customer is not a valid class.

The menu is used by the customer to select a meal, and may be regarded as a suitable class.
Ben may want to change the contents of his menu from time to time; therefore, it is necessary
that the class can accommodate a change in the contents of the displayed menu items. This
approach also allows the Menu class to be more easily used for other restaurants.

Each customer will produce an order that is special to that customer. An order must be
regarded as a class, since it will contain a meal based upon the selection from the menu by each

Ben’s Breakfast Bar Menu

Eggs 2.75

Blueberry Pancakes 4.00

Bagels with Cream Cheese 1.50

English Muffin 0.95

Yogurt 1.00

Corned Beef Hash 1.75

Toast 0.75

Fries 1.00

Tea 0.75

Coffee 1.20

Hot Chocolate 1.95

Figure 5.12 Menu at Ben’s Breakfast Bar

268 Chapter 5 Repetition and One-Dimensional Arrays

customer. Within the Order class, it must be possible for a customer to state the quantities of
food and beverages required.

Since Ben is in business to earn a living, he will present a customer with a tab (bill) at the
end of the meal. This is an itemization of the food ordered and the total cost of the meal. For
each customer (or group of customers) Ben will write and present a tab; therefore, the tab
appears to be a valid candidate class.

We may conclude that suitable candidate classes are menu, order, tab, and the driver pro-
gram, with the four candidate classes being expressed in the problem as the classes Menu, Order,
Tab, and Example_12.

The list of verbs from the statement of the problem are write, allow, select, place, and given.
From this list, suitable candidate methods are: select (from the menu), place (an order) and be
given (the tab). In the context of the classes the verb select belongs to the class Menu, the verb
place belongs to the class Order, and the verb given belongs to the class Tab. These verbs can
translate into the instance methods selection in the class Menu, quantityOrdered in the
class Order, and pickUpTheTab in the class Tab. See Figure 5.13.

Both the Menu class and the Tab class use the NumberFormat class from the text package
to display the monetary values correctly, and with the appropriate currency sign. Since the out-
put from the program displayed at the end of this section was created on a computer in the
U.K., it features the British pound Sterling.

Algorithm Development
The class Menu contains two instance variables; the first, menu, is a CheckBoxes object for dis-
playing the items in the menu and the second, menuItems, is a one-dimensional array contain-
ing a concatenation of the prices and names of the food and beverage items to be displayed in
the check boxes. The class menu also contains two static one-dimensional array variables for
storing the names of the foods and the prices of the foods; these are foodNames and
foodPrices respectively.

Menu

-foodNames
-foodPrices
-menu
-menuItems

-foodNames
-foodPrices
-customerOrder
-quantityOrdered

+Menu
+showMenu
+selection
+getFoodNames
+getFoodPrices

+Tab
+pickUpTheTab

-foodNames
-preSelection

TabOrder

+Order
+quantityOrdered

Figure 5.13 UML representation of classes

Case Study: Ben’s Breakfast Bar 269

The constructor for the class Menu creates a CheckBoxes object containing the prices and
names of the food and beverages. The instance method selection returns a one-dimensional
boolean array indicating those items that have been selected by the user from the menu.

The class menu also contains static class methods to return the names of the foods and the
prices of the foods.

import avi.*;
import java.text.NumberFormat;

public class Menu
{

// instance variables
private CheckBoxes menu;
private String[] menuItems;

// class (static) variables
private static String[] foodNames;
private static float[] foodPrices;

// constructor
/**
The Menu class enables an object to be created that represents a
menu of food and beverages. The menu is represented as check boxes.
@param screen is the container for the check boxes object.
@param titleOfMenu is the title that appears across the menu.
@param food is a one-dimensional array containing the names of the
foods/ beverages that appear on the menu.
@param prices is a one-dimensional array of the prices of the food
and beverages.
*/
public Menu(Window screen, String titleOfMenu,

String[] food, float[] prices)
{

NumberFormat money = NumberFormat.getCurrencyInstance();

foodNames = new String[food.length];
foodNames = food;
foodPrices = new float[prices.length];
foodPrices = prices;

menuItems = new String[food.length];
// concatenate price and food description
for (int index=0; index != food.length; index++)
{

270 Chapter 5 Repetition and One-Dimensional Arrays

menuItems[index] = food[index]+
" "+money.format(prices[index]);

}

menu = new CheckBoxes(screen, titleOfMenu, menuItems);
}

// class (static) methods
/**
Get the names of foods on the menu.
@return Returns an array of the names of the foods.
*/
public static String[] getFoodNames()
{

return foodNames;
}

/**
Get the prices of foods on the menu.
@return Returns an array of the prices of the foods.
*/
public static float[] getFoodPrices()
{

return foodPrices;
}

// instance methods
/**
Displays the menu on the screen.
*/
public void showMenu()
{

menu.showCheckBoxes();
}

/**
Stores the checked items as true in a corresponding boolean array.
@return A boolean array with each cell set at true for each
respective check box ticked.
*/
public boolean[] selection()
{

return menu.getCheckedBoxes();
}

}

Case Study: Ben’s Breakfast Bar 271

Notice that the class Menu is dependent upon the classes Window and CheckBoxes from the
avi package, and the class NumberFormat from the text package, as shown in Figure 5.14.

The class Order contains a static variable, foodNames, a one-dimensional array containing the
names of the foods and beverages, and one instance variable, preSelection, a one-dimensional
boolean array indicating those items that had been preselected by the customer from the menu.

The constructor for this class initializes the array preSelection. The instance method
quantityOrdered, requests a user to input, via a slider, the quantities of food and beverages
chosen from the menu. The method quantityOrdered returns a one-dimensional array of the
quantities ordered for every item displayed in the menu.

import avi.*;

public class Order
{

// instance variable
private boolean[] preSelection;
private static String[] foodNames;

// constructor
/**
The Order class enables an object to be created that represents the
quantities of food/beverages ordered from the menu.
@param selectedItems is the one-dimensional array containing the
selected items from the menu.

Menu Window

CheckBoxes

NumberFormat

Figure 5.14 UML dependencies

272 Chapter 5 Repetition and One-Dimensional Arrays

*/
public Order(boolean[] selectedItems)
{

preSelection = selectedItems;
foodNames = Menu.getFoodNames();

}

// instance method
/**
Stores the quantity of food/ beverages required from the selected
items.
@param screen is the container for the slider object
@return An integer array with each cell corresponding to each of the
items on the menu, and representing the quantity of food/ beverages
ordered.
*/
public int[] quantityOrdered(Window screen)
{

int[] quantity = new int[preSelection.length];

Slider inputQuantity = new Slider(screen,"Quantity?",1,10,1);

for (int index=0; index != preSelection.length; index++)
{

if (preSelection[index])
{

screen.write("What quantity of "+foodNames[index]+
" do you want to order?\n");

inputQuantity.showSlider();
quantity[index] = inputQuantity.getValue();

}
else
{

quantity[index] = 0;
}

}

screen.clearTextArea();

return quantity;
}

}

Case Study: Ben’s Breakfast Bar 273

Notice that the class Order is dependent upon the classes Window and Slider from the avi
package, and the class Menu, as shown in Figure 5.15.

The purpose of the class Tab is to display an itemized tab on the screen. A typical layout for
a tab is illustrated in Figure 5.16.

Order Window

Slider

Menu

Figure 5.15 UML dependencies

Figure 5.16 An example of a tab

At Ben's Breakfast Bar you ordered:

Eggs 2 @ £2.75 = £5.50
Toast 4 @ £0.75 = £3.00
Coffee 2 @ £1.20 = £2.40

AMOUNT TO PAY £10.90

Thank you - have a nice day.

274 Chapter 5 Repetition and One-Dimensional Arrays

The class Tab contains instance variables that represent two one-dimensional arrays, and static
variables that also represent two one-dimensional arrays. These arrays are initialized by the con-
structor to correspond with the quantities of food and beverages ordered and the customer
order, and with the names and prices of the food and beverages from the menu, respectively.

The instance method pickUpTheTab displays the tab on the screen in the format depicted
in Figure 5.16.

import avi.*;
import java.text.NumberFormat;

public class Tab
{

// instance variable
boolean[] customerOrder;
int[] quantityOrdered;

// static variables
private static String[] foodNames;
private static float[] foodPrices;

// constructor
/**
The Tab constructor creates an object from the customer's order for
displaying as an itemized tab or bill.
@param quantity is a one-dimensional array of the quantities of
food/beverages chosen.
@param choice is a one-dimensional array of the choice of
food/beverages made by the customer.
*/
public Tab(int[] quantity, boolean[] choice)
{

quantityOrdered = quantity;
customerOrder = choice;
foodNames = Menu.getFoodNames();
foodPrices = Menu.getFoodPrices();

}

// instance method
/**
The method will display in the text area of the screen a fully
itemized tab or bill.
@param screen is the container for the text area on which to display
the tab.

Case Study: Ben’s Breakfast Bar 275

@param name is the name of the bar or restaurant.
*/
public void pickUpTheTab(Window screen, String name)
{

NumberFormat money = NumberFormat.getCurrencyInstance();
float costOfItems;
float total=0.0f;

screen.write("At "+name+" you ordered:\n\n");

for (int index=0; index != customerOrder.length; index++)
{

if (customerOrder[index])
{

costOfItems = foodPrices[index]*
quantityOrdered[index];

screen.write(foodNames[index]+" "+
quantityOrdered[index]+
" @ "+
money.format(foodPrices[index])+
" = "+
money.format(costOfItems)+"\n");

total=total+costOfItems;
}

}

screen.write("\n------------------------\n");
screen.write("AMOUNT TO PAY\t"+money.format(total));
screen.write("\n------------------------\n\n");
screen.write("Thank you - have a nice day.");

}
}

Notice that the class Tab is dependent upon the class Window from the avi package and the
class NumberFormat from the text package, and the Menu class, as illustrated in Figure 5.17.

Testing
The test data reflects the choice of meal shown in Figure 5.11. The choice of food from the
menu was Eggs, Toast, and Coffee, which is encoded in the customerOrder instance variable
as follows.

cell index 0 1 2 3 4 5 6 7 8 9 10
customerOrder true false false false false false true false false true false

276 Chapter 5 Repetition and One-Dimensional Arrays

The prices of the foods are stored in a one-dimensional array foodPrices as follows.

cell index 0 1 2 3 4 5 6 7 8 9 10
prices 2.75 4.0 1.5 0.95 1.0 1.75 0.75 1.0 0.75 1.20 1.95

The quantities of food and beverages ordered are stored in the one-dimensional array
quantityOrdered as follows.

cell index 0 1 2 3 4 5 6 7 8 9 10
quantity 2 0 0 0 0 0 4 0 0 2 0

Desk check of the method pickUpTab

Index customerOrder quantityOrdered foodPrices costOfItems Total

0 true 2 2.75 5.50 5.50

1 false

2 false

3 false

4 false

5 false

6 true 4 0.75 3.00 8.50

7 false

8 false

9 true 2 1.20 2.40 10.90

10 false

Tab Window

NumberFormat

Menu

Figure 5.17 UML dependencies for the class Tab

Case Study: Ben’s Breakfast Bar 277

The class Example_12 is used to test the classes Menu, Order, and Tab. This class is con-
structed from the following algorithm.

1. create and show window object screen
2. create radio buttons object to continue or quit
3. do
4. clear text area of screen
5. create menu and select food and beverages
6. create customer order and select quantities of food and beverages
7. create customer tab
8. display tab on the screen
9. show radio buttons to prompt to continue

10. while request to continue

From the algorithm for class Example_12 it is possible to list the class dependencies in Figure
5.18. Notice that the class Example_12 is dependent upon the classes Window and

Example_12 Window

RadioButtons

Order

Tab

Menu

Figure 5.18 UML class dependencies for Example_12

278 Chapter 5 Repetition and One-Dimensional Arrays

RadioButtons from the avi package and upon Menu, Order, and Tab from the current direc-
tory containing the class Example_12.

import avi.*;

class Example_12
{

static public void main(String[] args)
{

final String[] food = {"Eggs","Blueberry Pancakes",
"Bagels with Cream Cheese",
"English Muffin","Yogurt",
"Corned Beef Hash","Toast", "Fries",
"Tea","Coffee","Hot Chocolate"};

final float[] prices = {2.75f,4.0f,1.5f,0.95f,1.0f,1.75f,
0.75f,1.0f,0.75f,1.20f,1.95f};

boolean[] choice = new boolean[food.length];
int[] quantity = new int[food.length];

Window screen = new Window("Example_12.java");
screen.showWindow();

String[] reply = {"continue","quit"};
RadioButtons buttons = new
RadioButtons(screen,"What next?",reply);

// declare menu, Order and Tab objects
Menu menu;
Order order;
Tab amount;

do
{

// clear screen
screen.clearTextArea();

// instantiate menu
menu = new Menu(screen, "Ben's Breakfast Bar Menu",

food, prices);

// choose from menu
menu.showMenu();
choice = menu.selection();

Case Study: Ben’s Breakfast Bar 279

// instantiate customer order
order = new Order(choice);
quantity = order.quantityOrdered(screen);

// instantiate customer tab
amount = new Tab(quantity, choice);

// display tab on screen
amount.pickUpTheTab(screen,"Ben's Breakfast Bar");

// request to continue or quit
buttons.showRadioButtons();

} while (buttons.getNameOfButton().equals("continue"));
}

}

A screen shot from the running program follows.

280 Chapter 5 Repetition and One-Dimensional Arrays

A listing of the log file appears below.

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_12.java date: 4/28/2000 time: 1:19:25

===

At the prompt: Ben's Breakfast Bar Menu, you selected [Eggs £2.75 Toast
£0.75 Coffee £1.20] from the check boxes.

What quantity of Eggs do you want to order?
At the prompt: Quantity?, you selected [2] from the slider.

What quantity of Toast do you want to order?
At the prompt: Quantity?, you selected [4] from the slider.

What quantity of Coffee do you want to order?
At the prompt: Quantity?, you selected [2] from the slider.

At Ben's Breakfast Bar you ordered:

Eggs 2 @ £2.75 = £5.50
Toast 4 @ £0.75 = £3.00
Coffee 2 @ £1.20 = £2.40

AMOUNT TO PAY £10.90

Thank you - have a nice day.At the prompt: What next?, you selected [con-
tinue] from the radio buttons.

At the prompt: Ben's Breakfast Bar Menu, you selected [Eggs £2.75
Blueberry Pancakes £4.00 Bagels with Cream Cheese £1.50 Yogurt £1.00
Corned Beef Hash £1.75 Coffee £1.20 Hot Chocolate £1.95] from the
check boxes.

What quantity of Eggs do you want to order?
At the prompt: Quantity?, you selected [4] from the slider.

What quantity of Blueberry Pancakes do you want to order?
At the prompt: Quantity?, you selected [8] from the slider.

Case Study: Ben’s Breakfast Bar 281

What quantity of Bagels with Cream Cheese do you want to order?
At the prompt: Quantity?, you selected [2] from the slider.

What quantity of Yogurt do you want to order?
At the prompt: Quantity?, you selected [1] from the slider.

What quantity of Corned Beef Hash do you want to order?
At the prompt: Quantity?, you selected [1] from the slider.

What quantity of Coffee do you want to order?
At the prompt: Quantity?, you selected [3] from the slider.

What quantity of Hot Chocolate do you want to order?
At the prompt: Quantity?, you selected [1] from the slider.

At Ben's Breakfast Bar you ordered:

Eggs 4 @ £2.75 = £11.00
Blueberry Pancakes 8 @ £4.00 = £32.00
Bagels with Cream Cheese 2 @ £1.50 = £3.00
Yogurt 1 @ £1.00 = £1.00
Corned Beef Hash 1 @ £1.75 = £1.75
Coffee 3 @ £1.20 = £3.60
Hot Chocolate 1 @ £1.95 = £1.95

AMOUNT TO PAY £54.30

Thank you - have a nice day.At the prompt: What next?, you selected [quit
] from the radio buttons.

Modify Example_12 to:

(1) Input the name of a cocktail bar to replace the name Ben’s Breakfast Bar at
run-time.

(2) Input the names and prices of cocktail drinks at run-time.

(3) Recompile and run the program.

NOW DO THIS

282 Chapter 5 Repetition and One-Dimensional Arrays

S U M M A R Y

■ The statements within a while loop can be executed zero or more times.

■ The statements within a do..while loop are executed at least once.

■ Both the while and do..while loops use conditional expressions to control
the number of repetitions.

■ All statements within a while loop and a do..while loop will be executed
while the conditional expression is true.

■ Counter variables may be increased or decreased by one by using the postfix
increment ++ and the postfix decrement -- operators.

■ If the first expression in a for loop is omitted, then the initialization (and
declaration) of the loop control variable must take place outside of the loop.

■ If the second expression in a for loop is omitted, then the loop does not ter-
minate unless it contains a break statement.

■ If the third expression in a for loop is omitted, then the loop control variable
must be incremented or decremented within the body of the loop.

■ By omitting all three expressions from within a for loop, it is possible to set
up an infinite loop.

■ An array is an implicit Java class; hence, an array is an object.

■ Storage space is allocated to an array using the keyword new.

■ The length of an array can be determined through the class variable length.

■ A one-dimensional array is a data structure that can be used to store data of
one type.

■ An array is subdivided into cells. Each cell has a unique index value, and the
first cell has an index of 0 (zero).

■ If the array is static, it is a good practice to declare the number of cells of an
array as a constant.

■ Access to any item of data in the array is through the name of the array, fol-
lowed by the position of the data in the array, that is, the index of the cell that
contains the data.

■ A loop control variable in a for statement is a useful way of representing the
index of an array. By varying the value of the loop control variable, it is possi-
ble to access any cell within the array.

■ We can use the NumberFormat class to help us format numbers according to
local conventions.

Exercises 283

Review Questions
1. What is the purpose of a loop?

2. Is the conditional expression true or false upon exiting from a while loop?

3. What is the minimum number of times a do..while loop can be repeated?

4. How is a sentinel value used to control a while loop?

5. State the fundamental operations associated with using a while loop as a counter.

6. At what point in the loop does each expression in a for statement execute?

7. True or false? The statement counter=counter-1 is the same as the expression
counter--.

8. What does the statement x++ do?

9. What is an infinite loop?

10. True or false? An array stores data of different types.

11. What is an index to an array?

12. Is the index of the first cell in an array always 0?

13. Declare an array realNumbers to contain five floating-point numbers.

14. Modify the declaration in Question 13 to initialize the contents of respective cells to the
real values 1.0, 2.0, 3.0, 4.0, and 5.0.

15. State an alternative method to that described in Question 14 for the initialization of the
array.

16. Write a statement to show how you would display a number in the third cell of the array
declared in Question 13.

17. What method in the String class is used to store a string as an array of characters?

Exercises
18. Desk check the following while loop. What is output from the program segment?

int counter = 1;
while (counter < 10)
{

screen.write("\t" + counter);
counter = counter + 2;

}

284 Chapter 5 Repetition and One-Dimensional Arrays

19. Desk check the following do..while loop using the test data 10, �1, and 9. What is
the purpose of the loop?

do
{

input.showDialogBox();
digit = input.getInteger();

} while (digit < 0 || digit > 9);

20. Desk check the following for loop. What is output?

for (int counter = 0x61; counter <= 0x7A; counter++)
{

screen.write((char)counter);
}

21. Discover the errors in the following segments of code.

(a) int i = 10;
while (i > 0);
{

screen.write("T minus " + i + " and counting\n");
i--;

}

(b) for (int i=10; i > 0; i--);
screen.write("T minus " + i + " and counting\n");

22. Use a for loop to rewrite the following segment of code.

int x = 30;
while (x >= 3)
{

screen.write(x+"\n");
x--;

}

23. Figure 5.19 illustrates the steps required to convert the decimal number 3947 to the
hexadecimal number F6B.

Design an algorithm, using pseudocode, to convert a decimal number to a hexadecimal
number. Desk check your answer with the data shown in Figure 5.19.

24. Desk check the following segment of code. What is the final value of the identifier value?

int[] alpha = {-10,16,19,-15,20};
int value = 0;

for (int index=0; index != 5; index++)
value = value + alpha[index];

25. What is the result of alpha[3]-alpha[1] in the array declared in Question 24?

Programming Problems 285

26. What is the error in the following segment of code?

char[] string = "abracadabra";

27. Given the declaration

String data = "Ten green bottles standing on the wall.";

describe the functionality of the following statement:

char [] string = data.toCharArray();

28. What is the value of string.length for the string declared in Question 27.

29. Desk check the following code and determine the final contents of the array.

int[] numbers = {5,2,8,7,0,3};
int left = 0;
int right = numbers.length()-1;

while (left <= right)
{

numbers[right] = numbers[left];
left++;
right--;

}

Programming Problems
30. Write a program that uses a loop to display the message Hello, World 10 times on the

screen.

31. Write a program to input a message of your choice and the number of times you want to
repeat it; then display the message repeatedly.

3947/16=246 remainder 11[B]

246/16=15 remainder 6

15/16=0 remainder 15[F]

3947 in decimal is equivalent to F 6 B

Figure 5.19 Conversion of a decimal to a hexadecimal

286 Chapter 5 Repetition and One-Dimensional Arrays

32. Write a program to output a table of conversion from miles to kilometers. The table
should contain column headings for miles and kilometers. Miles should be output as
integer values between 1 and 50, in steps of 1 mile. New headings should be printed at
the beginning of the table and after 20 and 40 miles, respectively. Note that 1 mile =
1.609344 kilometers.

33. Write a program using while loops to output the following:

(a) The odd integers in the range 1 to 29

(b) The squares of even integers in the range 2 to 20

(c) The sum of the squares of the odd integers between 1 and 13

(d) The alphabet in lowercase—without using the toLowerCase method

34. Repeat Question 33 using for loops.

35. Repeat Question 33 using do..while loops.

36. Write a class containing a main method to use a do..while loop for the validation of
data from a dialog box. Use a Memo object to inform that the data is not legal.

37. Modify Example_3, the die rolling program, to check for pairs of dice that have the same
value when rolled. You should announce only when the values are the same.

38. Write a new die rolling program to record the frequency of occurrence of each die as it is
rolled. Create an array of these frequencies and display the contents of the array after:

(a) 600 throws

(b) 6,000 throws

(c) 6,000,000 throws.

Note you are not expected to use any audio-visual classes in this problem apart from the
Window class.

39. Return to the Body-Mass Index Case Study from Chapter 4. Modify Example_8 to
input the data for many people, and store the frequency of people who fall into each of
the four categories specified in Figure 4.11. At the end of the program, display the fre-
quency analysis for each weight category.

40. Invent a MultiplicationTable class. You supply a positive nonzero integer N to the
constructor, and a method within the class displays the multiplication table from N
times 1 up to N times 12.

41. Return your answer to Question 23. Write a program to input a positive integer number
and convert the value to a hexadecimal number. Hint: Since the solution will require you
to display a number starting with the least significant digit through to the most signifi-
cant digit, you will need to use the escape sequence \r (carriage return) to move the cur-
sor to the beginning of a line without advancing to a new line.

Programming Problems 287

42. A diamond merchant has recently received a consignment of stones. The diamonds are
to be categorized by weight according to Figure 5.20. At the end of the weighing, the
merchant requires a print-out of the total number of stones in each category and the
percentage weight of each category. Assume that the electronic scale the merchant uses
is calibrated in milligrams. Write a program to input the weights of the diamonds and
output the required statistics. Note: 200 mg is equivalent to 1 carat (SI).

43. You plan to take a walking holiday in the Canadian Rockies. The trip is expected to last
five days (unless the bears get you!). From your map of the area, you measure the dis-
tances you want to walk each day. The Canadian map is metric, with 1 centimeter
equivalent to 0.78 kilometers. You estimate that because of the mountainous terrain
your average speed of walking will be 1.5 miles per hour (you think in miles per hour,
not kilometers per hour!).

Your task is to estimate how many miles you will walk each day and how long it will
take you. Calculate the total distance you will have traveled by the end of the holiday
and the total time you will spend walking between daily destinations. Note: 1 kilometer
is equivalent to 0.625 miles.

Computerize the process of estimating the distances and times.
Write a program to input the map distances traveled on each leg of the journey and

calculate the actual distances in miles and the time to walk between destinations.

44. Write a program to store the alphabet as characters in an array. The program should dis-
play

(a) The entire alphabet

(b) The first six characters of the alphabet

(c) The last 10 characters of the alphabet

(d) The tenth character of the alphabet

45. Write a program to input 10 integers in numerical ascending order into a one-dimen-
sional array X; copy the numbers from array X to another one-dimensional array Y, such
that array Y contains the numbers in descending order. Output the contents of array Y.

Class Carats

A >100

B >65

C >35

D >15

E >5

F <=5

Figure 5.20 Diamond classification

288 Chapter 5 Repetition and One-Dimensional Arrays

46. The monthly sunshine record for a holiday resort follows.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Hours of Sunshine 100 90 120 150 210 250 300 310 280 230 160 120

Write a program to do the following.

(a) Store the names of the months and the hours of sunshine in two one-dimensional
arrays.

(b) Calculate and display the average number of hours of sunshine over the year.

(c) Calculate and display the names of the months with the highest and lowest number
of hours of sunshine.

47. Write a program to input a phrase and display the Unicode, in hexadecimal, for each
character of the phrase.

48. Write a program to input a phrase that is guaranteed to contain an opening parenthesis
and a closing parenthesis, in that order, and is possibly repeated. For example, such a
phrase might be

for (int index=0; index != 5; index++) screen.write(index);

(a) Scan each character in the phrase and output only those characters that are con-
tained between the opening and closing parentheses.

(b) Rescan the phrase and output only those characters that are outside of the opening
and closing parentheses.

49. Write a Survey class that will support taking surveys on various topics. The class should
make use of the CheckBox class for a survey in which a particular question that will
posed, along with a list of potential answers. The class should allow the programmer to
easily define, administer, and report the results of the survey.

Next write a program that uses the Survey class to survey a group of students about
why they are studying computer programming and Java.

50. Create a new class Table, in the Case Study: Ben’s Breakfast Bar, to record the order
taken at a particular table in the bar. The new class will allow a customer to place as many
orders as required before being presented with the tab.

C H A P T E R 6

Advanced Concepts
with Classes
In the previous chapters you were taught how to create your own
classes. This chapter extends your knowledge of object-oriented pro-
gramming including showing you how one class can inherit the charac-
teristics of another class to build a hierarchical relationship between
classes.

By the end of the chapter you should have an understanding of the following
topics.

■ The concept of inheritance

■ Defining hierarchies of superclasses and subclasses

■ Using methods appropriate to a class through polymorphism

■ Using an abstract class to create a clearly defined and documented hierarchy

■ The creation and use of interfaces

■ Method overloading

■ Object properties

■ Passing objects as parameters

289

290 Chapter 6 Advanced Concepts with Classes

Figure 6.1 Base and derived classes

6.1 Inheritance

Inheritance is the process by which one class receives the characteristics of
another class.

One of the identifying characteristics of object-oriented languages and sys-
tems is support for inheritance. With inheritance we can define a new class by
allowing it to take on some of the characteristics of a previously defined class,
usually reducing the amount of work required to define the new class.

Figure 6.1 illustrates how different car models are derived from a fundamen-
tal concept of a vehicle. The concept of the vehicle is a blueprint of the generic
car and specifies such features as four wheels, an engine, a transmission unit, and
a saloon body shell. Different car models can be derived from this concept of a
vehicle, and each derivation incorporates a plan for a specific car such as a
Corvette, VW Beetle, or Porsche. All three vehicles have inherited the charac-
teristics of the generic car; that is to say, they all have four wheels, they all con-
tain engines and transmission units, and they are all built with a saloon body
shell. However, each particular model has a different set of four wheels, a differ-
ent engine and transmission unit, and a different shape of body shell.

The concept or blueprint of the vehicle is the base class. The Corvette, VW
Beetle, and Porsche all inherit characteristics from the base class and represent
derived classes. The cars themselves are the objects since they are instances, cre-
ated in the factory, of a particular model or class of car.

Figure 6.1 illustrates the class hierarchy between the base class vehicle and
the derived classes Corvette, VW Beetle, and Porsche. By convention, the
arrows in the figure always point from the derived class to the base class. The
solid line with the hollow arrowhead represents a UML generalization. This is a
taxonomic relationship between a more general element (the base class) and a
more specific element (any one of the derived classes). This example illustrates
some of the following fundamental features of inheritance.

6.1 Inheritance 291

SYNTAX

Inheritance:
class subclass-name extends superclass-name

The initial class is called the base or parent class; in Java this is known as the
superclass. The receiving class is called the derived or child class; in Java this is
known as the subclass.

What are the benefits of using inheritance?

■ Inheritance increases your ability to reuse classes. Software can be extended by
reusing previously defined classes and adding new methods to the subclasses.

■ Inheritance increases the level of abstraction in a program.

■ Inheritance improves the clarity in the design of classes by allowing the
implementation of methods to be postponed in superclasses and to appear in
subclasses.

When you examined the partial listing for the String class you may have won-
dered about the inclusion of the keyword extends in the clause:

public final class String extends Object

The Java syntax for achieving inheritance follows.

The keyword extends implies that all the methods defined in the class Object
are inherited by the class String. The class Object is known as a superclass of
the subclass String. The superclass/subclass relationship may be represented in
a hierarchy diagram as depicted in Figure 6.2. As explained previously, UML con-
vention dictates that the arrowed-line in the figure always points up the hierarchy
to the superclass and that the line is drawn solid, with a hollow arrowhead.

Superclass

Subclass

Object

String

Figure 6.2 UML hierarchy diagram showing superclass and subclass relationship

292 Chapter 6 Advanced Concepts with Classes

All Java classes are ultimately derived from the Object class. A partial list-
ing of the class Object follows.

public class Object
{

// constructor
public Object();

// public instance methods
public boolean equals(Object obj);
public String toString();

.

.

// protected instance methods
protected Object clone() . . .
protected void finalize() . . .

}

6.2 An Example of Inheritance

Consider a class that describes an employee for a company. The class should, at
the very least, contain some form of reference to an individual employee, such as
the name of a person being employed and the name of the department in which
the person works. This class also contains the length of service, in years, the
employee has worked for the company.

public class Employee
{

// constant
protected final static float holidayEntitlement = 20.0f;

// instance variables
protected String employeeName;
protected String employeeDept;
protected int lengthOfService;

// constructor
public Employee(String name, String department, int yearsService)
{

employeeName = name;
employeeDept = department;
lengthOfService = yearsService;

}

6.2 An Example of Inheritance 293

// instance methods
public String getName()
{

return employeeName;
}

public String getDepartment()
{

return employeeDept;
}

public int getLengthOfService()
{

return lengthOfService;
}

public float getHolidays()
{

return holidayEntitlement;
}

}

Notice that the instance variables employeeName, employeeDept, and
lengthOfService are not declared as private but declared as protected.
Normally, variables are declared as private to prevent access from outside of
the class. However, although private variables are inherited by subclass objects
(in that each object has its own copy of that variable with its own value), such
variables cannot be accessed directly by the subclass objects themselves. They
can only be accessed through any protected or public access method of the
superclass. A protected variable can be accessed from any method of any class
in the same package. Recall that a package is a group of related classes. Thus,
protected variables are safe from access from outside a controlled set of classes,
yet can still be easily accessed from within the set, that is, from classes in the
same package.

The Employee class is given a constructor for initializing the name of the
employee, the name of the department in which the employee works, and the
length of time spent working for the company. Instance methods are included
that return the name of the employee, the name of the department in which the
employee works, the length of service, and the holiday entitlement. Suppose
there is a special type of employee, which we will call a technician, who has
many of the characteristics of a standard employee but also has some additional
characteristics, or a few characteristics that differ from the standard employee.
Another class, Technician, may be defined that inherits all the characteristics
of the class Employee.

For example, the statement class Technician extends Employee per-
mits all the variables and methods of the class Employee to be inherited by the

294 Chapter 6 Advanced Concepts with Classes

Superclass

Subclass

Employee

Technician

Figure 6.3 A hierarchy diagram between the Employee and Technician classes

class Technician. Failure to use inheritance would mean that all the variables
and methods that are common to both an Employee and a Technician would
need to be recoded as part of the definition of the class Technician. Figure 6.3
illustrates the hierarchical relationship between the two classes Employee and
Technician.

public class Technician extends Employee
{

// instance variable
protected float holidays;

// constructor
public Technician(String name, String department, int yearsService)
{

super(name, department, yearsService);
}

}

What has the class Technician inherited from the class Employee?
The answer is that it has inherited the constant holidayEntitlement, the

instance variables employeeName, employeeDept, and lengthOfService, and
the instance methods getName(), getDepartment(), getLengthOfService,
and getHolidays. Inheritance allows both the variables and the instance meth-
ods to be used for objects of type Technician despite both the variables and
methods not being explicitly defined in this class.

Figure 6.4 illustrates a more detailed hierarchy class diagram between the
Employee and Technician classes. All the protected constants and instance
variables, and public instance methods are inherited by the Technician class.

6.2 An Example of Inheritance 295

Employee

Technician

+Technician

#holidayEntitlement
#employeeName
#employeeDept
#lengthOfService

+Employee
+getName
+getDepartment
+getLengthOfService
+getHolidays

Figure 6.4 Inheritance by the Technician class

We must define a new constructor for the class Technician that includes
the initialization of the name of a technician, their department of employment,
and their length of service with the company. The coding of the Technician
constructor has made use of the Employee constructor by making specific refer-
ence to the constructor of the superclass through the reserved word super.

In the following program, notice that due to inheritance the instance meth-
ods getName(), getDepartment, getlengthOfService, and getHolidays
have been invoked by an object of type Technician, even though the instance
methods were defined in the class Employee.

The super keyword, if present in a constructor, must always be the first statement in a con-
structor body.

1i

296 Chapter 6 Advanced Concepts with Classes

Program Example_1—Demonstration of inheritance between Employee
and Technician classes

import avi.*;

class Example_1
{

public static void main(String[] args)
{

Window screen = new Window("Example_1.java");
screen.showWindow();

// instantiate an employee and a technician
Employee caterer = new
Employee("Millie Johnson","Catering", 7);
Technician lineWorker = new
Technician("Susan Schroeder","Electronics", 4);

// use methods of superclass to display details of employee
screen.write("Using the superclass methods \n");
screen.write("Name: "+caterer.getName()+"\n");
screen.write("Department: "+caterer.getDepartment()+"\n");
screen.write("Service: "+caterer.getLengthOfService()+

" years\n");
screen.write("Holidays: "+caterer.getHolidays()+" days\n\n");

// use inherited methods of superclass to display details of a
// technician
screen.write("Using the inherited superclass methods \n");
screen.write("Name: "+lineWorker.getName()+"\n");
screen.write("Department: "+

lineWorker.getDepartment()+"\n");
screen.write("Service: "+lineWorker.getLengthOfService()+

" years\n");
screen.write("Holidays: "+lineWorker.getHolidays()+

" days\n\n");
}

}

Here are the results from the log file after the program was executed.

6.2 An Example of Inheritance 297

Java is a strictly typed language. This implies that the compiler would never
allow you to assign an object or primitive of one type to an object or primitive of
a different type unless casting was used. What about the assignment of objects
within a hierarchy? What will the compiler allow?

When one class inherits from another class anywhere in the hierarchy, an
object of any subclass in the hierarchy is also a legal superclass object. Therefore,
an object of a subclass may be assigned to an object of its superclass without a
type violation.

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_1.java date: 7/8/2000 time: 11:26:45

===

Using the superclass methods
Name: Millie Johnson
Department: Catering
Service: 7 years
Holidays: 20.0 days

Using the inherited superclass methods
Name: Susan Schroeder
Department: Electronics
Service: 4 years
Holidays: 20.0 days

When you construct an object of a subclass, the constructor for the superclass also gets
invoked. Should you omit a call to the superclass constructor from your subclass construc-

tor, Java will automatically insert this call for you. If the superclass does not contain a default
(no argument) constructor, this will result in a compilation error.

Constructor calls are automatically chained. A sequence of constructor methods are invoked
from subclass to superclass and eventually to the Object class. Because a superclass construc-
tor is always invoked before the subclass constructor, the body of the Object constructor is exe-
cuted first, followed by the execution of the bodies of the constructors down through the class
hierarchy, and finally to the execution of the subclass constructor body.

1i

298 Chapter 6 Advanced Concepts with Classes

An object referred to by a variable of type Employee, say, can be assigned to
a variable of type Technician, where Technician is a subclass of Employee, if
the object is really of type Technician. These two facts are illustrated in pro-
gram Example_2.

Program Example_2—Demonstration of object assignment over a hierarchy

import avi.*;

class Example_2
{

public static void main(String[] args)
{

Window screen = new Window("Example_2.java");
screen.showWindow();

Employee worker;
Technician lineWorker;
Technician laboratoryWorker = new
Technician("Peter Potter","Micro Laboratory",7);

// any object of a subclass (Technician) can be assigned to an
// object of a superclass (Employee)
worker = laboratoryWorker;
screen.write("The employee's name is "+worker.getName()+"\n");
screen.write("working in the "+worker.getDepartment()+

" department\n\n");

// any object of a superclass (Employee) can be assigned to a
// subclass (Technician) using an appropriate cast
lineWorker = (Technician)worker;
screen.write("The technician's name is also "+

lineWorker.getName()+"\n");
screen.write("also working in the "+lineWorker.getDepartment()+

" department\n\n");
}

}

Results from the log file follow:

6.3 Overriding Superclass Methods 299

6.3 Overriding Superclass Methods

A subclass may replace an inherited method from a superclass. When a subclass
defines a method with the same name, return type, and argument list as a
method in a superclass, the superclass method is said to be overridden. When
the overridden method is invoked for an object of the class, the new definition
of the method is called and not the old definition from the superclass.

If the calculation of the holiday entitlement is different for a technician than
an employee, then the inherited method getHolidays should be overridden in
the Technician class. Assume that for every year of service in excess of 5 years,
a technician receives an extra half-day holiday, then the method to calculate the
new holiday entitlement must change. The following listing of the Technician
class illustrates how the getHolidays method has been overridden.

public class Technician extends Employee
{

// instance variable
protected float holidays;

// constructor
public Technician(String name, String department, int yearsService)
{

super(name, department, yearsService);
}

// overridden instance method
public float getHolidays()
{

int service = this.getLengthOfService();

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_2.java date: 7/2/2000 time: 5:12:49

===

The employee's name is Peter Potter
working in the Micro Laboratory department

The technician's name is also Peter Potter
also working in the Micro Laboratory department

300 Chapter 6 Advanced Concepts with Classes

if (service > 5)
holidays = (float)(holidayEntitlement+0.5f*(service-5));

else
holidays = (float)holidayEntitlement;

return holidays;
}

}

Figure 6.5 illustrates the addition of an instance variable and an overridden
method in the Technician class.

The test program listed in class Example_3 calculates and displays the holi-
days for a person in the Employee class and a person in the Technician class.

Employee

Technician

+Technician
 +getHolidays

#holidayEntitlement
#employeeName
#employeeDept
#lengthOfService

+Employee
+getName
+getDepartment
+getLengthOfService
+getHolidays

#holidays

Figure 6.5 Modifications to the Technician class.

6.3 Overriding Superclass Methods 301

Program Example_3—To demonstrate overriding superclass methods

import avi.*;

class Example_3
{

public static void main(String[] args)
{

Window screen = new Window("Example_3.java");
screen.showWindow();

Employee caterer = new
Employee("Millie Johnson", "Catering", 7);
Technician lineWorker = new
Technician("Hans Neilsen", "Micro Laboratory", 7);

screen.write(caterer.getName()+" in the "+
caterer.getDepartment()+" department has "+
caterer.getHolidays()+
" days holiday entitlement\n\n");

// use overridden method getHolidays in the Technician class
screen.write(lineWorker.getName()+" in the "+

lineWorker.getDepartment()+" department has "+
lineWorker.getHolidays()+
" days holiday entitlement\n\n");

}
}

Results from the log file follow:

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_3.java date: 7/8/2000 time: 11:49:9

===

Millie Johnson in the Catering department has 20.0 days holiday entitlement

Hans Neilsen in the Micro Laboratory department has 21.0 days holiday enti-
tlement

302 Chapter 6 Advanced Concepts with Classes

Inheritance lets us reuse the parts of a superclass that are applicable to the subclass, and
redefine the parts that differ.

1i

In program Example_3 it is clear which version of getHolidays is to be
invoked by the type of the object being used in the call to the instance method.
Thus caterer.getHolidays() and lineWorker.getHolidays() will invoke
the methods for returning the holiday entitlement for an employee and a tech-
nician respectively.

If you look back at the partial listing of the Object class, presented at the end of
Section 6.1, you will notice that it contains a public instance method toString.

Java allows programmers to use objects as operands for string operations
such as concatenation (+). When this occurs, Java will look for a programmer-
defined toString method in the object’s class, and will use it to convert the
object into a string before proceeding with the concatenation. If such a method
is not found, then Java will use a default toString operation that is defined for
all objects.

The Employee class can be modified to include a toString method as follows.

public class Employee
{

.

.

public String toString()
{

String temporary = new String("Name: "+employeeName+
"\nDept: "+employeeDept+
"\nService: "+lengthOfService);

return temporary;
}

}

Since all classes are subclasses of the Object class, we have overridden the
toString method in the subclass Employee. Recall the purpose of the
toString method is to represent the object as a string so that it may be written as
part of a string. For example, to write the details of an employee we would code:

Employee caterer = new Employee("Millie Johnson", "Catering", 7);
screen.write(caterer+"\n");

6.4 Polymorphism 303

In generating Java byte codes, the compiler searches for a toString method
associated with the Employee class to enable a string to be written to the screen.

A toString method may also be included in the subclass Technician, as
follows:

public class Technician extends Employee
{

.

.

public String toString()
{

String temporary = new String("TECHNICIAN\t"+super.toString());
return temporary;

}
}

Notice that it is possible to make reference to an inherited method from a
superclass, even when the method has been overridden in the subclass. The
inherited method from the superclass can be invoked by using the keyword
super. For example, within the class Technician, instead of writing the name,
department, and length of service of the technician, it is possible to re-use the
toString method in the Employee class by coding super.toString().

6.4 Polymorphism

The Java engine is able to dynamically, at run time, choose one of several
method definitions to execute for a single method call. This capability is called
polymorphism.

Polymorphism is a way of giving a method one name that is shared up and
down an object hierarchy, with each object in the hierarchy implementing the
method in a way appropriate to itself. Polymorphism applies only to a specific
set of methods. To write polymorphic classes we require two things:

■ The classes must be part of the same inheritance hierarchy.

■ The classes must support the same set of required methods.

Consider the creation of a Manager class that is also a subclass of the Employee
class, as depicted by Figure 6.6. The holiday entitlement for a manager is
dependent upon the length of service. For every year in excess of 10 years serv-
ice, a manager receives an extra day of holiday time added to the normal holiday
entitlement.

The coding of the Manager class follows.

304 Chapter 6 Advanced Concepts with Classes

Employee

#holidayEntitlement
#employeeName
#employeeDept
#lengthOfService

+Employee
+getName
+getDepartment
+getLengthOfService
+getHolidays
+toString

Technician

+Technician
+getHolidays
+toString

 #holidays

Manager

+Manager
+getHolidays
+toString

 #holidays

Figure 6.6 The addition of a Manager class as a subclass of the Employee class

public class Manager extends Employee
{

// instance variable
protected float holidays;

// constructor
public Manager(String name, String department, int yearsService)
{

super(name, department, yearsService);
}

// instance methods
public float getHolidays()
{

int service = this.getLengthOfService();

if (service > 10)

6.4 Polymorphism 305

Dynamic method lookup is not as fast as invoking a method directly. Dynamic method
lookup is not required for static or private methods and those methods and classes

declared as final. A final method cannot be overridden and a final class cannot be
extended.

1i

holidays = (float)(holidayEntitlement + (service - 10));
else

holidays = (float)holidayEntitlement;

return holidays;
}

public String toString()
{

String temporary = new String("MANAGER\t"+super.toString());
return temporary;

}
}

Consider what would happen if we wrote a general purpose class method to dis-
play the details of any employee, including technicians and managers.

static void displayDetails(Employee person)
{

screen.write(person+"\n");
screen.write("Holidays: "+person.getHolidays()+"\n");

}

How would the compiler know which toString method and which
getHolidays method to use for either a technician or a manager? The answer
is that the compiler doesn’t know, and the decision on which toString method
and getHolidays method to use is postponed until run-time! Dynamic method
lookup is a technique where each object has a table of its methods, and Java
searches for the correct versions of any overridden methods at run-time.

Program Example_4 uses the concepts discussed in this section to demon-
strate polymorphism. Notice that it is perfectly legal for an object of a subclass
to be passed as an argument to a method that requires a parameter of its super-
class type.

306 Chapter 6 Advanced Concepts with Classes

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_4 date: 7/8/2000 time: 1:4:44

===

TECHNICIAN Name: Franco Ramirez
Dept: Electronics
Service: 18
Holidays: 26.5

MANAGER Name: Brian Biggins
Dept: Computing
Service: 21
Holidays: 31.0

Program Example_4—An example of polymorphism

import avi.*;

class Example_4
{

static Window screen = new Window("Example_4");

static void displayDetails(Employee person)
{

screen.write(person+"\n");
screen.write("Holidays: "+person.getHolidays()+"\n\n");

}

public static void main(String[] args)
{

screen.showWindow();

Technician lineWorker = new
Technician("Franco Ramirez","Electronics",18);
Manager computerManager = new
Manager("Brian Biggins","Computing",21);

displayDetails(lineWorker);
displayDetails(computerManager);

}
}

Following are the contents of the log file after program execution.

6.5 Instanceof Operator 307

SYNTAX

Instanceof Operator:
object instanceof class

6.5 Instanceof Operator

If we had wanted to explicitly discriminate between a technician and a manager
in the displayDetails method, we would have used the instanceof opera-
tor. The syntax of the operator follows.

The instanceof operator returns true if the object on its left-hand side is an
instance of the class specified on its right-hand side; otherwise, instanceof
returns false. The instanceof operator will also return false if the object is
null.

The displayDetails method could be modified to provide explicit dis-
crimination between the subclasses as follows. The conditional statement

(person instanceof Technician)

is true if the object being passed happens to be of the type Technician.
Similarly, the condition

(person instanceof Manager)

is true if the object being passed happens to be of type Manager.
The only other type of object being passed is that for an Employee, in which

case the conditional statements would be false.
If the statement

(person instanceof Employee)

is used, then the superclass Employee cannot act as a discriminator of subclass
objects since all subclasses are, by their nature, instances of superclasses.

Ensure when you choose a discriminator class, the class contains methods, either directly
or through inheritance, that can be used by objects of the class. Failure to comply with

this requirement will cause a syntax error.

!

308 Chapter 6 Advanced Concepts with Classes

Program Example_5—Using the instanceof operator

import avi.*;

class Example_5
{

static Window screen = new Window("Example_5");

static void displayDetails(Employee person)
{

screen.write(person+"\n");
screen.write("Holidays: "+person.getHolidays()+"\n");

if (person instanceof Technician)
screen.write("All technicians will receive a productivity "+

"bonus of $500.\n\n");
else if (person instanceof Manager)

screen.write("All managers will receive a productivity "+
"bonus of a new car.\n\n");

else
screen.write("The management want to convey their thanks "+

"to the hard work of all employees!\n\n");
}

public static void main(String[] args)
{

screen.showWindow();

Employee caterer = new
Employee("Millie Johnson","Catering",7);
Technician lineWorker = new
Technician("Franco Ramirez","Electronics",18);
Manager computerManager = new
Manager("Brian Biggins","Computing",21);

displayDetails(caterer);
displayDetails(lineWorker);
displayDetails(computerManager);

}
}

The following screenshot results from running the program:

6.6 Shadowed Variables 309

In the next several sections we will introduce some advanced concepts: shad-
owed variables, inner classes, abstract methods and classes, and interfaces. An
in-depth treatment of these concepts is beyond the scope of this book.
Nevertheless, a basic understanding of them is important for anyone studying
Java and object-oriented programming.

6.6 Shadowed Variables

In Section 6.3, we noticed that when the overridden method is invoked for an
object of a class, the new definition of the method is called and not the old defi-
nition from the superclass. What about variables? What happens if an inherited
variable has the same name as a variable of the subclass? The variable of the sub-
class is said to shadow the inherited variable with the same name. The inherited
variable is visible in the subclass, yet it cannot be accessed by the same name.
But what if you need to use the inherited variable in the subclass; how can it be
accessed? The answer is to use the reserved word super. For example, if class B
is a subclass of class A, and both contain a variable named common as follows.

class A
{

protected int common;
.

}

310 Chapter 6 Advanced Concepts with Classes

class B extends A
{

// shadow the inherited variable common from class A
protected int common;
.

}

Then in class B, the variable common may be referred to by either common or
this.common. However, the inherited variable common is referred to by
super.common or by ((A)this).common.

Notice that the keyword this may be cast to refer to the appropriate class,
in this case class A. This technique is useful if you want to refer to a variable in a
class beyond the immediate superclass higher up the class hierarchy.

Although you may refer to shadowed variables by casting an object to the
appropriate type, this technique cannot be used to refer to overridden methods.
In Program Example_6, objectB has been cast to an object of class A and
assigned to objectA. Despite the method function() being overridden in
class B, objectA.function() does not invoke the original method in super-
class A.

Program Example_6—Overriding is not overshadowing

import avi.*;

class A
{

protected int X=2;
public A(){}
public int function(){return 2*X;}

}

class B extends A
{

protected int X=3;
public B(){}
public int function(){return 3*X;}

}

public class Example_6
{

static public void main(String[] args)
{

Window screen = new Window("Example_6.java");
screen.showWindow();

6.6 Shadowed Variables 311

A objectA;
B objectB = new B();

screen.write("X from class B = "+objectB.X+"\n");
screen.write("Value of function from class B = "+

objectB.function()+"\n");

objectA = (A)objectB; // cast objectB to an instance of class A

screen.write("You may refer to shadowed variables by casting\n");
screen.write("an object of the appropriate type.\n");
screen.write("X from class A = "+objectA.X+"\n");
screen.write("You cannot refer to overridden methods by casting\n");
screen.write("an object to the appropriate type.\n");
screen.write("Value of function is still from class B = "+

objectA.function());
}

}

Results from the program log file follow:

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_6.java date: 7/2/2000 time: 7:37:29

===

X from class B = 3
Value of function from class B = 9
You may refer to shadowed variables by casting
an object of the appropriate type.
X from class A = 2
You cannot refer to overridden methods by casting
an object to the appropriate type.
Value of function is still from class B = 9

Shadowing variables results in hard-to-read code and should only be used when absolutely
necessary.

!

312 Chapter 6 Advanced Concepts with Classes

6.7 Inner Classes

Java will allow an inner class to be nested within an outer class. This feature is
useful in encapsulation, since it allows you to incorporate a class definition of
data fields within the class that makes specific reference to the data fields. The
inner class is known as a member class, and is just another class component in the
same way that constants, variables, and methods are also class components. The
code within a member class can implicitly refer to any of the constants, vari-
ables, and methods of its enclosing class.

Notice from the following example that in order to access the fields of the
member class, it has been necessary to create an instance of the class Center.
The instance of the member class may then be used in the enclosing class.

public class RoundShape
{

// coordinates of center represented by an inner class
protected class Center
{

int x,y;

Center(){}
}

protected Center C = new Center();
protected float radiusOfCircle;

.

.
}

6.8 Abstract Methods and Classes

In constructing a hierarchy of relationships among various classes, it is some-
times beneficial to include a class, normally at the top of the hierarchy, whose
methods cannot be instantiated. The class acts as a blueprint for all subclasses,
and as such it can be extended to suit different classes within the taxonomy.

An abstract method is defined by the method’s signature and has no method
body. An abstract class is a class that contains at least one abstract method. As a
result, an abstract class cannot be instantiated since there would be no means of
implementing the abstract method(s) within the class. When a class contains at
least one abstract method, the class is automatically taken to be abstract.
However, not all the methods of an abstract class need be abstract. There can be
a mixture of constructors, implemented methods, and method signatures.

6.8 Abstract Methods and Classes 313

RoundShape

+RoundShape
-accuracy

area

#Center

Figure 6.7 UML representation of an abstract class

The UML notation for an abstract class is depicted in Figure 6.7. Notice
that the name of the class and the name of the abstract methods are written in
italics to distinguish the component from a normal class.

A subclass of an abstract class may be instantiated, provided that the abstract
methods of the abstract class are overridden and implemented in the subclass. If
all the abstract methods are not implemented, the subclass must also be abstract.

With inheritance, you can describe is-a hierarchies representing many possi-
ble type variants. We have seen from Figure 6.1 that a Corvette is-a vehicle, a
VW Beetle is-a vehicle, and a Porsche is-a vehicle. In program Example_4 we
can see that a Technician is-a(n) Employee, and a Manager is-a(n) Employee.

As a rule of thumb, in the is-a hierarchy we say that inheritance is appropri-
ate if every object of class Y may also be viewed as an object of class X. In other
words “Y extends X” and “Y is-a(n) X” are consistent. In the classes that follow,
the abstract class RoundShape provides the superclass for the classes Circle and
Sphere. We can say that a circle is-a round shape and a sphere is-a round shape.

But the abstract class RoundShape contains an inner class Center. In con-
sidering the relationship between the class Center and the class RoundShape,
it would be incorrect to use an is-a relationship, since RoundShape is-not-a
Center. For this reason, class RoundShape did not inherit from class Center.
The has-a relationship describes every object of a class X that has-a set of attrib-
utes of type Y. In program Example_7 it is correct to say that a RoundShape
has-a Center and, therefore, the class Center may be treated as an attribute of
the class RoundShape.

The class RoundShape is an abstract class; it contains an abstract method to
calculate the area of a round shape. This method is implemented in the class
Circle as the area of a circle, and in class Sphere as the surface area of a
sphere. Figure 6.8 illustrates that both the classes Circle and Sphere inherit
from the abstract class RoundShape.

Implementations of the classes follow.

314 Chapter 6 Advanced Concepts with Classes

Sphere

+Sphere
+area

Circle

+Circle
+area

RoundShape

#Center

+RoundShape
-accuracy

area

Figure 6.8 UML representation of hierarchy of classes

public abstract class RoundShape
{

// coordinates of center represented by an inner class
protected class Center
{

int x,y;
}

protected Center C = new Center();
protected float radiusOfCircle;

// constructor
public RoundShape(int xCenter, int yCenter, float radius)
{

C.x=xCenter;
C.y=yCenter;
radiusOfCircle = radius;

}

// abstract method
abstract public float area();

6.8 Abstract Methods and Classes 315

}

public class Circle extends RoundShape
{

// constructor
public Circle(int xCenter, int yCenter, float radius)
{

super(xCenter, yCenter, radius);
}

// return area of circle
public float area()
{

float areaOfCircle =
(float)(Math.PI*Math.pow((double)radiusOfCircle,2.0));
return areaOfCircle;

}
}

public class Sphere extends RoundShape
{

// constructor
public Sphere(int xCenter, int yCenter, float radius)
{

super(xCenter, yCenter, radius);
}

// return surface area of sphere
public float area()
{

float surfaceArea =
(float)(4.0*Math.PI*Math.pow((double)radiusOfCircle,2.0));
return surfaceArea;

}
}

In the previous chapter, you were introduced to a method of formatting
numbers for output. Program Example_7 uses a method to format decimal
numbers. The package text contains a DecimalFormat class to allow deci-
mal numbers to be output to a specified precision.

For example, if you specify an output format for numbers as "0.##", then 0
represents a digit, # is a digit (but a trailing zero appears as a space), and the
period . is a placeholder for a decimal point. A number such as 18.543 would be

316 Chapter 6 Advanced Concepts with Classes

Using the Java documentation you downloaded in the
Introduction:

(1) Look up and read about the DecimalFormat class in the text package.

(2) Write, compile, and run a short experimental program to test the formatting
of decimal numbers.

NOW DO THIS

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_7.java date: 7/2/2000 time: 7:45:16

==

Area of circle 19.63
Area of sphere 78.54

output as 18.54, and a number such as 18.567 would be output as 18.57, and a
number such as �18.543 would be output as �18.54.

Program Example_7 tests the methods of the Circle and Sphere classes.

import avi.*;
import java.text.DecimalFormat;

public class Example_7
{

public static void main(String[] args)
{

Window screen = new
Window("Example_7.java");
screen.showWindow();

Circle c = new Circle(5,5,2.5f);
Sphere s = new Sphere(5,5,2.5f);

// display details about the circles
DecimalFormat out = new DecimalFormat ("0.##");
screen.write("Area of circle "+out.format(c.area())+"\n");
screen.write("Area of sphere "+out.format(s.area()));

}
}

The following results are from the log file.

Case Study: Boats 317

CASE STUDY

Boats

Statement of the Problem The following case study demonstrates inheritance and abstract
methods. A boat may have a set of attributes such as a name, a momentary position [x,y] on a
lake with respect to some origin of coordinates, a bearing (direction of travel with respect to the
compass point North), and a current speed. Figure 6.9 illustrates the attributes of a boat.

Figure 6.10 illustrates how the bearing of a boat may be calculated when traveling from
coordinates [x,y] to coordinates [newX, newY]. The horizontal and vertical distances between
these two points in Figure 6.10 are X = newX-x, and Y = newY-y respectively. The calculation of
the bearing is the angle whose tangent is X/Y, in other words the arctangent of X/Y. By simple
geometry you may observe that the angle opposite side X and adjacent to side Y has the same
value as the angle marked as the bearing.

Create an abstract class Boat that contains the attributes of name, position, bearing, and
speed, together with instance methods to return these attributes.

A generic boat may be modeled as an object that has the instance variables of name, posi-
tion, bearing, and speed. In addition to the class constructor, this class will contain methods
to retrieve the data associated with a boat and calculate the bearing of the boat. The class will
also contain two abstract methods to set the speed of a boat and to determine whether it is pos-
sible to travel to a particular destination on the boat (is there enough fuel or is the wind blowing
in favor of the journey?). The listing of the abstract Boat class follows.

public abstract class Boat
{

// instance variables
// name of boat
protected String name;

N

Bearing

[x,y] name
 speed

Figure 6.9 Representation of a boat

Y

N

Bearing
= arctan(X/Y)

[x,y]

[newX, newY]

X

Figure 6.10 Calculation of the bearing of a boat

318 Chapter 6 Advanced Concepts with Classes

// coordinates of current position (grid size miles)
protected float x,y;
// compass bearing from North
protected int bearing;
// speed of boat (mph)
protected int speed;

// constructor
/**
Subclasses of the abstract Boat class can create boat objects.
@param id is the name of a boat.
@param X is the x coordinate of the position of the boat
@param Y is the y coordinate of the position of the boat
*/
public Boat(String id, float X, float Y)
{

name = id;
x = X;
y = Y;

// setting default values
bearing = 0;
speed = 0;

}

// instance methods
/**
The method getName will return the name of the boat.
@return Returns the name of the boat.
*/
public String getName(){return name;}

/**
The method getX will return the x coordinate of the position of the
boat.
@return Returns the x coordinate.
*/
public float getX(){return x;}

/**
The method getY will return the y coordinate of the position of the
boat.
@return Returns the y coordinate.

Case Study: Boats 319

*/
public float getY(){return y;}

/**
The method getBearing will return the bearing in degrees (with
respect to North) of the boat.
@return Returns the bearing of the boat.
*/
public int getBearing(){return bearing;}

/**
The method getSpeed will return the current speed of the boat.
@return Returns the speed of the boat.
*/
public int getSpeed(){return speed;}

/**
The method calculateBearingTo will set the instance variable bearing
to the heading a boat must make to reach the position [newX, newY]
@param newX is the x coordinate of the new position.
@param newY is the y coordinate of the new position.
*/
public void calculateBearingTo(float newX, float newY)
{

double X = (double)(newX-x);
double Y = (double)(newY-y);

int angle = (int)Math.toDegrees(Math.atan(X/Y));

// convert angle to bearing
if (X >= 0 && Y >=0)

bearing = angle;
else if (Y < 0)

bearing = 180+angle;
else

bearing = 360+angle;
}

// abstract methods
public abstract void setSpeed(float fractionOf);
public abstract boolean canTravelTo(float newX, float newY);

}

320 Chapter 6 Advanced Concepts with Classes

Analysis of Classes Since the data and methods belonging to the Boat class are common to
all boats, the abstract Boat class may be taken as the superclass of all lake-bound vessels. In this
case study we will look at the properties of a motorboat and a sailboat, and derive classes
MotorBoat and SailBoat, respectively, as subclasses of the Boat class, as depicted by Figure
6.11.

A characteristic that distinguishes a motorboat from the generic boat is, of course, the
engine. We can now include in the MotorBoat class new attributes that are particular to a
motorboat; these are the maximum speed of the boat, the amount of fuel it has in its tank, and
the average fuel consumption. There are instance methods that enable the inspection of the fuel
remaining in the tank, and the average fuel consumption.

Besides the MotorBoat class inheriting all the instance variables and instance methods of
the superclass Boat, it must also implement the inherited abstract methods. Failure to perform
this implementation will result in the MotorBoat class remaining as an abstract class.

The setSpeed method is implemented by setting the speed of the motorboat to a fraction
of the maximum speed.

The canTravelTo method requires the range of the boat to be calculated and compared
with the distance the boat must travel in order to reach the destination. Clearly if the range of
the boat is calculated as the product of the amount of fuel remaining and the average fuel con-
sumption, and this range is less than the distance to travel, then the journey is not possible with-
out refueling.

Calculating the distance to travel between the current position of the boat [x,y] and the new
position [newX, newY] is simply a matter of applying the Pythagorian theorem. Figure 6.12
illustrates the distances involved in this calculation. The class MotorBoat contains a private
method to calculate this distance.

The code for MotorBoat follows.

Boat

MotorBoat SailBoat

Abstract superclass

Subclasses

Figure 6.11 Class hierarchy

Case Study: Boats 321

public class MotorBoat extends Boat
{

// instance variables
protected int fastestSpeed;
protected float fuelRemaining;
protected float averageFuelConsumption;

// constructor
/**
The MotorBoat class will create a motorboat object.
@param id is the name of the motorboat
@param X is the x coordinate of the position of the motorboat
@param Y is the y coordinate of the position of the motorboat
@param maxSpeed is the maximum speed of the motorboat (miles per
hour)
@param fuel is the amount of fuel in the tank of the boat (gallons)
@param consumption is the average consumption of the fuel (miles per
gallon)
*/
public MotorBoat(String id, float X, float Y, int maxSpeed,

float fuel, float consumption)
{

super(id,X,Y);
fastestSpeed = maxSpeed;
fuelRemaining = fuel;
averageFuelConsumption = consumption;

}

Dist
an

ce

newX-x

[x,y]

[newX, newY]

n
e
w
Y
-
y

Figure 6.12 Calculation of the dis-
tance to a new position

322 Chapter 6 Advanced Concepts with Classes

// instance methods
/**
The method getFuelRemaining returns the amount of fuel remaining in
the motorboat's fuel tank.
@return Returns the amount of fuel (gallons) remaining.
*/
public float getFuelRemaining()
{

return fuelRemaining;
}

/**
The method getAverageFuelConsumption returns the average fuel
consumption for the motorboat.
@return Returns the average fuel consumption (miles per gallon).
*/
public float getAverageFuelConsumption()
{

return averageFuelConsumption;
}

/**
This is an implementation of the inherited abstract method setSpeed.
The setSpeed method sets the speed of the motorboat as a fraction
of its maximum speed.
@param fractionOfPower represents the fraction of the top speed of
the motorboat.
*/
public void setSpeed(float fractionOfPower)
{

speed = (int)(fastestSpeed * fractionOfPower);
}

/**
This is an implementation of the inherited abstract method
canTravelTo. The canTravelTo method determines whether there is
enough fuel in the motorboat to travel to the position given by the
coordinates [newX, newY].
@param newX is the x coordinate of the destination position of the
motorboat.
@param newY is the y coordinate of the destination position of the
motorboat.

Case Study: Boats 323

@return returns true if the motorboat has enough fuel to travel the
distance to the new position.
*/
public boolean canTravelTo(float newX, float newY)
{

// calculate range of motorboat on remaining fuel
float range = fuelRemaining * averageFuelConsumption;

// check if the motorboat can travel to new destination
return (range >= distanceToTravel(newX, newY));

}

// returns the distance between the current position of the motor-
// boat and the destination
// position of the motorboat

private float distanceToTravel(float newX, float newY)
{

return (float)Math.sqrt((double)((newX-x)*(newX-x)+
(newY-y)*(newY-y)));

}
}

Write a test program to:

(1) Instantiate a MotorBoat object, whose name is the “Venetian Princess”, at
coordinates [0,0]. The boat has a maximum speed of 40 mph, a fuel tank
capacity of 15 gallons, and an average fuel consumption of 15 miles per gallon.

(2) Set the speed of the boat to 70% of full power, and calculate the bearing of
the boat necessary to reach a point on the lake given by the coordinates
[20,15].

(3) Display all the relevant attributes of the boat and state whether it is possible
to make the journey.

NOW DO THIS

Now let us turn our attention to a sailboat as a lake-vessel. The sailboat has no engine and is
solely reliant upon the speed and direction of the wind. The attributes of wind-speed and wind-
direction belong to the wind and not the sailboat, therefore, it is fitting to examine a class for
Wind before progressing to the SailBoat class.

324 Chapter 6 Advanced Concepts with Classes

A constructor for the wind class requires two parameters, the speed of the wind and the
direction the wind is blowing. When we say a wind is blowing from, say, the South-West we
mean that the bearing of the wind is 45� (see Figure 6.13).

The constructor for the Wind class will need to convert a wind direction, specified by points on
the compass, e.g. SW, into an angle in degrees that represents a bearing with respect to North.

The following code is a listing of the Wind class.

public class Wind
{

// instance variables
int speedOfWind;
int directionOfWind;

// constructor
/**
The Wind class will allow a wind object to be created that
has a speed and blows from a given direction.
@param speed is the speed of the wind in mph
@param direction is one of eight points of the compass indicating
the direction from which the wind is blowing.
*/
public Wind(int speed, String direction)
{

speedOfWind = speed;

N

S

W E

sw
Wind blows from
the South-West (SW)

Bearing of wind = 045

Figure 6.13 Converting wind direction to a bearing

Case Study: Boats 325

// convert direction of wind into a bearing
direction = direction.toUpperCase();

if (direction.equals("N"))
directionOfWind = 180;

else if (direction.equals("NE"))
directionOfWind = 225;

else if (direction.equals("E"))
directionOfWind = 270;

else if (direction.equals("SE"))
directionOfWind = 315;

else if (direction.equals("S"))
directionOfWind = 0;

else if (direction.equals("SW"))
directionOfWind = 45;

else if (direction.equals("W"))
directionOfWind = 90;

else if (direction.equals("NW"))
directionOfWind = 135;

else
// set default of zero for incorrect direction
directionOfWind = 0;

}

// instance methods
/**
The method getWindSpeed returns the speed of the wind.
@return Returns the speed of the wind.
*/
public int getWindSpeed()
{

return speedOfWind;
}

/**
The method getWindDirection returns the direction (as an angle)
the wind is blowing from.
@return Returns the direction of the wind.
*/
public int getWindDirection()
{

return directionOfWind;
}

}

326 Chapter 6 Advanced Concepts with Classes

Since the speed of a sailboat is dependent upon the speed of the wind, it is obvious that a
Wind object should be included as a parameter in the SailBoat constructor. Remember, a class
name may be treated in the same way as a primitive type, therefore, you should not be surprised
at passing objects as parameters. After all you do this for String objects so why not for other
objects? When setting the speed of the sailboat it is necessary, in the setSpeed method, to rep-
resent the speed as a percentage of the sail area used against the speed of the wind.

We have placed a restriction on the direction a sailboat may travel. The direction of the wind
clearly has a major influence on how quickly we can reach the destination in a sailboat. If the
bearing of the wind is 45� either side of the bearing of the boat, then in the canTravelTo
method, travel is deemed to be possible, and we can reach our destination.

The Java code for the SailBoat class follows.

public class SailBoat extends Boat
{

// instance variables
int windSpeed;
int windDirection;

// constructor
/**
The SailBoat class will allow a sailboat object to be created.
@param id is the name of the sailboat.
@param X is the x coordinate of the initial position of the sail-
boat.
@param Y is the y coordinate of the initial position of the sail-
boat.
@param power is a Wind object, where the speed and direction of the
wind have a direct influence on the speed and direction of the sail-
boat.
*/
public SailBoat(String id, float X, float Y, Wind power)
{

super(id,X,Y);

Examine the Java code from the Wind class and answer the
following questions.

(1) What is the bearing of the wind when it is blowing from each of the following
directions—North-East, South, West, and North-West?

(2) If the wind has a bearing of 270�, from which direction is it blowing?

NOW DO THIS

Case Study: Boats 327

windSpeed = power.getWindSpeed();
windDirection = power.getWindDirection();

}

/**
An implementation of the abstract method setSpeed, inherited from
the superclass Boat. The method set speed will adjust the speed of
the boat depending how much sail area is open to the wind.
@param fractionOfSale is the fraction of total sale area that is
open to the wind.
*/
public void setSpeed(float fractionOfSail)
{

speed = (int)(windSpeed * fractionOfSail);
}

/**
This is an implementation of the inherited abstract method
canTravelTo. The canTravelTo method determines whether the wind
direction is favorable for the sailboat to reach position given by
the coordinates [newX, newY]. The wind direction is allowed to
vary up to 45 degrees from the bearing of the sailboat.
@param newX is the x coordinate of the destination position of the
sailboat.
@param newY is the y coordinate of the destination position of the
sailboat.
@return Returns true if the wind direction will allow the sailboat
to reach the new position.
*/
public boolean canTravelTo(float newX, float newY)
{

// return whether wind direction is favorable to reach
// destination
return ((windDirection >= bearing - 45) &&

(windDirection <= bearing + 45));
}

}

The full picture of the relationship between the classes is given in Figure 6.14.

328 Chapter 6 Advanced Concepts with Classes

SailBoat

+SailBoat
+setSpeed
+canTravelTo

#windSpeed
#windDirection

Wind

+Wind
+getWindSpeed
+getWindDirection

#speedOfWind
#directionOfWind

#name
#x
#y
#bearing
#speed

+MotorBoat
+getFuelRemaining
+getAverageConsumption
+setSpeed
+canTravelTo

-distanceToTravel

Boat

+Boat
+getName
+getX
+getY
+getBearing
+getSpeed
+calculateBearingTo
+calculateNewPosition

setSpeed
canTravelTo

#fastestSpeed
#fuelRemaining
#averageFuelConsumption

MotorBoat

Figure 6.14 Relationships between the classes

Case Study: Boats 329

Program Example_8 demonstrates how the methods from the various classes are tested.

import avi.*;
import java.text.DecimalFormat;

class Example_8
{

static Window screen = new Window("Example_8.java","bold","blue",24);
static DecimalFormat out = new DecimalFormat("0.#");

public static void displayStatistics(Boat vessel)
{

screen.write("Name: "+vessel.getName()+"\n");
screen.write("Position: "+out.format(vessel.getX())+","+

out.format(vessel.getY())+"\n");
screen.write("Bearing: "+vessel.getBearing()+"\n");
screen.write("Speed: "+vessel.getSpeed()+" mph\n");

if (vessel instanceof MotorBoat)
{

MotorBoat mb = (MotorBoat)vessel;
screen.write("Fuel remaining: "+

out.format(mb.getFuelRemaining())+" g\n");
screen.write("Average fuel consumption: "+

mb.getAverageFuelConsumption()+" mpg\n");
}

screen.write("\n\n");
}

public static void main(String[] args)
{

screen.showWindow();

// create motorboat called Enigma, positioned at coordinates
// 0,0 with a maximum speed of 25 mph, 5 gallons of fuel and an
// average fuel consumption of 25 mpg
MotorBoat enigma = new
MotorBoat("Enigma",0.0f,0.0f,25,5.0f,25.0f);

330 Chapter 6 Advanced Concepts with Classes

// set the Enigma on a bearing to reach the coordinates 10,10
enigma.calculateBearingTo(10.0f,10.0f);

// create a light breeze at a speed of 10 mph blowing from the
// South-East
Wind lightBreeze = new Wind(10,"SE");

// create a sailboat called Laser, positioned at coordinates
// 20,0 in a light breeze
SailBoat laser = new SailBoat("Laser",20.0f,0.0f,lightBreeze);

// set the Laser on a bearing to reach the coordinates 10,10
laser.calculateBearingTo(10.0f,10.0f);

// if the Enigma has enough fuel to travel to the new position
// then set the speed of the motorboat to 80% of its maximum
// speed
if (enigma.canTravelTo(10.0f,10.0f))
{

enigma.setSpeed(0.8f);
}

// if the Laser has a suitable following wind to travel to the
// new position then set the sail area to 100% (full sail)
if (laser.canTravelTo(10.0f,10.0f))
{

laser.setSpeed(1.0f);
}

// display the variables of the Enigma and the Laser
displayStatistics(enigma);
displayStatistics(laser);

}
}

The following screenshot results from running program.

Case Study: Boats 331

Statement of the Problem A computer simulation is an imitation of the behavior of a system.
The second half of this case study is a computer simulation of the movement of different types
of boats on a lake. In this example, the course a motorboat and a sailboat travel over a
predefined area will be displayed. The information output when running the simulation will be
the name, position, bearing, and speed at a particular time in the simulation for each boat. In
the case of the motorboat, the amount of fuel remaining will also be displayed. To ascertain the
movement of boats within a predefined area, the simulation time will be a period of minutes, or
even hours. However, the time it takes the simulation program to run will be several seconds.

Analysis of Classes The simulation is used to calculate the position, bearing, and speed of a
particular set of ships over a period of simulated time. Time is a suitable candidate for a class,
and will contain the following constructors and methods.

332 Chapter 6 Advanced Concepts with Classes

The class Time uses two instance variables to assist in recording the passing of time—a one-
dimensional array to store the hours and minutes, and a primitive variable to store the time interval.

The implementation of the class Time follows. Once again the coding of this class is a trivial
exercise; the authors have omitted the normal stages of algorithm development for the methods
in the class.

public class Time
{

// instance variables

/**
The array time stores the hours in time[0] and the minutes in
time[1]
both the hours and minutes are initialized to zero at the
start of the simulation.
*/
private int[] time = {0,0};

/**
The number of minutes the time must be updated, after the simulation
of a set of events, such as the boats moving to a new position.
*/
private int timeInterval;

// constructor
/**
The Time class creates an object that enables the passing of time to
be created, for the purpose of computer simulation of events.
@param interval is the time-lapse between observing events.
*/
public Time(int interval)
{

timeInterval = interval;
}

// instance methods

/**
The method update increases the time by the time interval.
*/
public void update()
{

time[1] = time[1]+timeInterval;

Case Study: Boats 333

if (time[1] >= 60)
{

time[0] = time[0] + (int)(time[1]/60);
time[1] = time[1] % 60;

}
}

/**
The getHours method gets the hours component of the simulated time.
@return Returns the hour component of elapsed time.
*/
public int getHours()
{

return time[0];
}

/**
The getMinutes method gets the minutes component of simulated time.
@return Returns the minutes component of elapsed time.
*/
public int getMinutes()
{

return time[1];
}

/**
The method elapsedTime returns the number of minutes that have
elapsed since the start of the simulation.
@return Returns the elapsed time in minutes.
*/
public int elapsedTime()
{

return 60*time[0] + time[1];
}

}

Before we can use the Time class in a simulation, it is necessary to introduce a method
to calculate the new position of a boat after a set period of time. The method
calculateNewPosition can be defined in the superclass Boat and inherited by the subclasses
MotorBoat and SailBoat.

Since both the speed of the boat and the time interval over which the boat travels are already
known, the distance between the current position of the boat [x,y] and the position of the boat
after a set time is calculated as a product of the speed and the time.

334 Chapter 6 Advanced Concepts with Classes

Figure 6.15 illustrates that the distance traveled and the bearing can be used to calculate the
x distance traveled and the y distance traveled. Once these values are known, they are used to
update the position of the boat from the current position [x,y] to the new position after the set
time interval. The revised code for the Boat class contains the implementation of the
calculateNewPosition method.

public abstract class Boat
{

.

.

/**
The method calculateNewPosition will set the values of x and y to the
new position of the boat as it moves over a period of time.
@param timeInterval is the period of time over which the change of
position takes place.
*/
public void calculateNewPosition(int timeInterval)
{

double angle;
double distance;

// time interval is the number of elapsed minutes since
// the previous distance was calculated
distance = speed * (float)timeInterval / 60.0f;
angle = ((double)bearing * Math.PI / 180.0);

// calculate new position
x = x+(float)(distance*Math.sin(angle));
y = y+(float)(distance*Math.cos(angle));

New position of boat
after time interval

d*
co

s(
be

ar
in

g)

N

Bearing

[x,y]

d*sin(bearing)

d

Figure 6.15 Calculation of the x and y distances trav-
eled.

Case Study: Boats 335

}

.

.

}

Now that we have a Time class to simulate the passing of time for the movement of a boat
on the lake, it is possible to implement a method useFuel in the class MotorBoat. The distance
traveled during a set time period is calculated as the product of the speed of the boat and the
time interval. The quantity of fuel used is the result of the division of the distance by the average
fuel consumption. This result is used to decrease the amount of fuel in the tank.

The revised code for the MotorBoat class contains the implementation of the useFuel
method.

public class MotorBoat extends Boat
{

.

.

.

/**
The method useFuel decreases the amount of fuel in the motorboat's
tank over a timed interval.
@param timeInterval is the time over which the position of the
motorboat changes.
*/
public void useFuel(int timeInterval)
{

// time interval is the number of elapsed minutes since
// the previous distance was calculated
float distance = speed * (float)timeInterval / 60.0f;

// reduce fuel to cover distance
fuelRemaining = fuelRemaining -

distance / averageFuelConsumption;
}
.
.
.

}

336 Chapter 6 Advanced Concepts with Classes

Program Example_9 simulates the movement of a motorboat and a sailboat over 60 min-
utes, with the position of the boats being displayed after every minute. Figure 6.16 shows the
dependencies within this program.

A listing of program Example_9 follows.

import avi.*;
import java.text.DecimalFormat;

class Example_9
{

static Window screen = new Window("Example_9.java");
static DecimalFormat out = new DecimalFormat("00.0");

static void boatData(Boat vessel, Time time)
// method to display the data on any type of boat
{

screen.write("["+time.getHours()+":"+time.getMinutes()+"]");
screen.write("\t"+vessel.getName());

Example_9 Window

DecimalFormat

Time

MotorBoat

SailBoat Wind

Figure 6.16 Dependency diagram

Case Study: Boats 337

screen.write("\tPosition: "+out.format(vessel.getX())+
","+out.format(vessel.getY()));

screen.write("\tBearing: "+vessel.getBearing());
screen.write("\tSpeed: "+vessel.getSpeed());

if (vessel instanceof MotorBoat)
{

MotorBoat mb = (MotorBoat)vessel;
screen.write("\tFuel remaining: "+

out.format(mb.getFuelRemaining())+" g");
}

screen.write("\n");
}

static public void main(String[] args)
{

// simulation over 60 minutes
final int MAX_SIMULATION_TIME = 60;
// simulate movement every 1 minutes
final int TIME_INTERVAL = 1;

screen.showWindow();

MotorBoat enigma = new
MotorBoat("Enigma",0.0f,0.0f,25,5.0f,25.0f);
enigma.calculateBearingTo(10.0f,10.0f);

Wind moderate = new Wind(15,"SE");

SailBoat laser = new SailBoat("Laser",20.0f,0.0f,moderate);
laser.calculateBearingTo(10.0f,10.0f);

if (enigma.canTravelTo(10.0f,10.0f))
{

enigma.setSpeed(0.8f);
}

if (laser.canTravelTo(10.0f,10.0f))
{

laser.setSpeed(1.0f);
}

// instantiate time
Time simulationTime = new Time(TIME_INTERVAL);

338 Chapter 6 Advanced Concepts with Classes

// display data on boats
do
{

boatData(enigma,simulationTime);
enigma.calculateNewPosition(TIME_INTERVAL);
enigma.useFuel(TIME_INTERVAL);
boatData(laser,simulationTime);
laser.calculateNewPosition(TIME_INTERVAL);
simulationTime.update();

} while (simulationTime.elapsedTime() <= MAX_SIMULATION_TIME);
}

}

Following is a screen shot from running the program. Notice that the motorboat reaches the destina-
tion whose position is given by the coordinates [10,10] at approximately 43 minutes into the simula-
tion, and the sailboat reaches the same destination at approximately 56 minutes into the simulation.

Note also that the fuel on the motorboat is gradually reduced over the timed simulation.

6.9 Interfaces 339

6.9 Interfaces

Sometimes we want a class to inherit from more than one other class. In Java this
is accomplished indirectly using an “interface.” An interface is a class that contains
only abstract methods and/or constants. The interface supplies a specification of
methods and requires another class to implement the methods of the specifica-
tion. The UML representations of an interface are shown in Figure 6.17.

Modify program Example_9 such that:
(1) The motorboat changes its bearing at [10,10] to reach a new destination at
[0,20], maintaining its current speed. At the new destination it changes its
course again to a final destination at [�20,0] at full speed.

(2) The sailboat changes bearing at [10,10] also to reach a new destination at
[�20,20] using full sail.

(3) Simulate the movement of the boats over 180 minutes, in 1 minute intervals,
and from the output, estimate at what time and position in the simulation the
boats cross paths.

NOW DO THIS

<<interface>>
X Y

methodA

methodB

Y

methodA

methodB

X

public class Y implements X

Figure 6.17 Alternative UML representations of an interface

340 Chapter 6 Advanced Concepts with Classes

The implementation of the methods of an interface may be regarded as weak
inheritance, hence the use of the dashed line with the hollow arrow head point-
ing at the interface. Consider the following scenarios illustrated in Figure 6.18.

Part (a) illustrates that several classes may inherit from a single class.
Therefore, class B can extend A, and class C can extend A. However, part (b)

A

B

class B extends A{..}
class C extends A{..}

class F extends D implements E

Several classes are allowed to inherit from a single class.

(b)

F

D

A single class may not inherit from multiple classes —
multiple inheritance is forbidden in Java.

(c)

C

E

F

D

Class F is allowed to inherit from class D and implement
the abstract methods defined by the interface E.

(d)

<<interface>>
E

interface I extends G,H {..}

I

Multiple inheritance of interfaces is allowed in Java.

<<interface>>
H

<<interface>>
G

(a)

Figure 6.18 Inheritance—classes versus interfaces

6.9 Interfaces 341

Interfaces are a data type, in the same way that classes are a data type. When a class
implements an interface, instances of that class can be assigned to variables of the inter-

face type.

1i

reveals that a single class cannot inherit from more than one class. The ability of
one class to inherit from more than one superclass is known as multiple inheri-
tance and is forbidden in Java. What if you have defined classes and you explic-
itly want them to inherit the characteristics from more than one class?

The answer is to define an interface. Part (c) illustrates that it is perfectly
acceptable to extend class D (that is, inherit all the constants, variables, imple-
mented constructors, and implemented methods into class F), and inherit all the
constants and abstract methods from class E. That is, you can interface E with a
view to implementing the undefined methods from E.

Java will permit multiple inheritance of interfaces, but not classes. In the
part (d) interface, I has inherited all the abstract methods and constants from
interfaces G and H. However, it is still necessary for a class to implement all the
inherited abstract methods from G and H.

Note that it is possible for an interface not to contain any methods or constants.

Recall the hierarchy described in Section 6.1. If each of the subclasses Corvette,
Beetle, and Porsche needed to implement a Drawing class, then the relation-
ships between the classes and the interface is shown in Figure 6.19.

Vehicle

Beetle

<<interface>>
Drawing

getDrawing

PorscheCorvette

Figure 6.19 Relationship between classes and an interface

342 Chapter 6 Advanced Concepts with Classes

If we assume that the constructor of the Vehicle class allows the name of a
model to be input, then the subclasses may also make reference to this construc-
tor. The subclasses also inherit the instance method to get the name of the
model. The significance of this example is not the inheritance, but how each
subclass implements the interface Drawing.

The interface Drawing contains just one abstract method getDrawing. The
implementation of getDrawing involves returning the name of an image file
associated with a picture of the appropriate subclass.

A listing of the interface Drawing follows.

public interface Drawing
{

public String getDrawing();
}

A listing of the classes in the hierarchy follows.

public class Vehicle
{

String model;

public Vehicle(String name)
{

model = name;
}

public String getName()
{

return model;
}

}

public class Beetle extends Vehicle implements Drawing
{

public Beetle(String name)
{

super(name);
}

public String getDrawing()
{

String image = new String(“Beetle.gif”);

return image;
}

}

6.9 Interfaces 343

public class Corvette extends Vehicle implements Drawing
{

public Corvette(String name)
{

super(name);
}

public String getDrawing()
{

String image = new String(“Corvette.gif”);

return image;
}

}

public class Porsche extends Vehicle implements Drawing
{

public Porsche(String name)
{

super(name);
}

public String getDrawing()
{

String image = new String(“Porsche.gif”);

return image;
}

}

Program Example_10 is used to demonstrate the use of the interface in the
associated classes.

import avi.*;

class Example_10
{

public static void main(String[] args)
{

Window screen = new
Window(“Example_10.java”,”bold+italic”,”black”,24);
screen.showWindow();

// instantiate car objects
Corvette corvette = new Corvette(“Corvette”);
Beetle beetle = new Beetle(“Beetle”);
Porsche porsche = new Porsche(“Porsche”);

344 Chapter 6 Advanced Concepts with Classes

// create an array of image filenames for each car
String[] pictures = new String[3];
pictures[0] = corvette.getDrawing();
pictures[1] = beetle.getDrawing();
pictures[2] = porsche.getDrawing();

// instantiate a FilmStrip containing the car images
FilmStrip images = new FilmStrip(screen,pictures,140,60);

// display the names of the cars on the screen
screen.write(corvette.getName()+”\n\n”);
screen.write(beetle.getName()+”\n\n”);
screen.write(porsche.getName()+”\n\n”);

// display the images of the cars on the screen
images.showFilmStrip();

}
}

A screen shot from the program running follows.

You may wonder when to use inheritance and when to use an interface:

■ When we want to create a collection of closely related classes that share
some behavior, we use inheritance.

6.10 Constructors Revisited 345

Overloading a method is not the same as overriding a method, as discussed earlier.
Overloading involves providing several methods with the same name, but having different

formal parameter lists. In overriding, not only are the names of the methods the same, but the
formal parameter lists of the overridden methods are also the same.

1i

■ Unlike inheritance, implementing an interface does not imply any close rela-
tionship between the class and the interface(s). However, if we only want a
collection of objects to be able to perform some common tasks, then using
an interface is a better strategy.

If you are a beginning student, the remainder of this chapter may be omitted on
the first reading.

6.10 Constructors Revisited

To help demonstrate the concepts described in this and the next two sections of
the chapter, we will investigate the creation of a class that provides us with
rational numbers (fractions). Such a class is often called a Rational ADT
(Abstract Data Type). Java provides base types for integers and real numbers but
not for rational numbers. We want to be able to create rational numbers, per-
form rational-number arithmetic, compare rational numbers for equality, make a
copy of a rational number, and print rational numbers. In this section and the
next two, we will introduce some new concepts using the rational number prob-
lem as an example; in the upcoming Case Study, we will completely develop the
class Rational. These sections will cover many important concepts and lan-
guage constructs: method overloading, method design alternatives, and copying
and comparing objects.

You have already learned that a constructor is given the same name as the
class, and you have probably observed that a class may contain more than one
constructor. For example, if you inspect the constructors for the String class,
you will notice there are nine constructors all with the same name, String.
Using the same name for methods, either constructors, instance methods, or
class methods, but not a mixture of all three, is known as method overloading.

You may wonder how the computer can distinguish between methods of the
same name. If you inspect the constructors for the String class, the only part of
the constructor that distinguishes it from the other constructors is the formal
parameter list. The number and type of parameters in the formal parameter list
is the only way in which the compiler can distinguish overloaded methods.

Consider creating a class for a rational number (fraction). A natural way to
do this is to create a class that contains two instance variables that together rep-
resent the fraction, a numerator and a denominator. Both instance variables

346 Chapter 6 Advanced Concepts with Classes

are declared as private since access to the variables must be restricted to meth-
ods within the class.

At least two constructors may be provided for this class. The first is a default
constructor that takes no parameters, yet initializes the numerator to zero and
the denominator to 1. A more useful constructor has parameters that represent
values for the numerator and denominator of the instantiated object. The ini-
tial steps towards the creation of the class Rational follow. The class contains
two instance variables and two constructors:

public class Rational
{

private int numerator; // instance variables
private int denominator;

public Rational() // default constructor
{

numerator = 0;
denominator = 1;

}

public Rational(int num, int denom) // specific constructor
{

numerator = num;

if (denom == 0)
denominator = 1;

else
denominator = denom;

makeRational();
}

.

.

You will note that the second constructor does not allow the creation of a
rational number with a zero denominator, which is illegal in the world of math-
ematics. Any attempt to use a zero denominator will result in a default denomi-
nator of unity being substituted. In the next chapter you will learn the technique
of exception handling to deal with erroneous data.

The class method makeRational() that is called in the second constructor
is used to reduce the fraction to its simplest rational form (for example, the frac-
tion 6/8 would be represented as 3/4) and for ensuring that a negative rational
number is stored with a negative numerator and a positive denominator. In
working with our rational number class we will always keep the representation

6.11 Instance Methods Revisited 347

Java does not allow operator overloading, so it is not possible to use the operators +, -, *,
and / in the context of rational numbers. The only exception to this rule is the overloading of

the + operator for string concatenation.

1i

of the rational number in this form. This approach will simplify some of the
methods that we will be creating.

6.11 Instance Methods Revisited

To continue building the class Rational, it will be necessary to include meth-
ods that can be applied to objects of type Rational. The mathematics of frac-
tions should include such operations as addition, subtraction, multiplication,
and division.

Suppose we have instantiated two Rational objects as follows:

Rational a = new Rational(1,2);
Rational b = new Rational(3,4);

and we want to add them together and put the result into the Rational object
c. There are several ways to approach the definition of the mathematical
operations, such as an add method. You could define an add instance method
with only one parameter that returns the sum of the numbers, for example,
c = a.add(b); or you could define an add class (static) method with
two parameters that returns the sum of the numbers, for example, c =
Rational.add(a,b). We will use a third approach—we define an add instance
method with two parameters that is invoked through the object that is to hold
the result of the operation (for example, c.add(a,b);).

The approach you choose will depend upon the problem set being used. For
example, you may want to use the add instance method that takes just one
parameter in a problem set that contains complex expressions such as
a.add(b.add(c)). In the programming problems at the end of this chapter,
you are given the opportunity to rewrite the Rational class using the alterna-
tive definitions.

The instance method for the addition of two rational numbers follows.

public class Rational
{

.

public void add(Rational x, Rational y)

348 Chapter 6 Advanced Concepts with Classes

a

b 3 4

1 2

3 43 4

Figure 6.20 Storage of objects

{

numerator = x.numerator * y.denominator +
y.numerator * x.denominator;

denominator = x.denominator * y.denominator;
makeRational();

}

.

.
If you had to add the fractions xn⁄xd � yn⁄yd, the result of the addition would take
the form of (xn.yd�xd.yn)⁄(xd.yd). Note that xn and yn refer to the numerator of the
rational numbers x and y, and xd and yd refer to the denominator of the rational
numbers x and y. In this method the instance variables numerator and denom-
inator refer to the instance variables of the object c that invoked the method.
These could also be expressed as this.numerator and this.denominator,
respectively. Access to the corresponding numerator and denominator
instance variables for the rational parameters x and y is via the dot (.) notation.
Thus x.numerator refers to the numerator instance variable for object x, and
y.denominator refers to the denominator instance variable for object y.

The value for the addition of the two fractions must be converted to the
simplest form using the class method makeRational(). Can you write instance
methods to subtract and multiply pairs of rational numbers? The answer is given
in a program listing later in the chapter. The divide operation is a special case, as
we will see in the next section.

6.12 Object Properties

Comparing Objects
You may recall that in Chapter 2 it was stated that class types are stored by ref-
erence, unlike primitive data types that are stored by value. Whenever an object
is instantiated, all the nonstatic class variables for that object are allocated mem-
ory and initialized with data. Figure 6.20 illustrates that for the declaration of

6.12 Object Properties 349

The values of the references are the values of memory addresses taken from the heap.
Therefore, the comparison of a==b is a comparison of whether a and b are the same mem-

ory addresses, in other words, the comparison asks if they refer to the same area of memory
for storing the object’s data.

1i

the two Rational objects a and b, separate memory is allocated for storing the
values of the two objects, and references point at the two areas of memory.

If we want to compare the two objects a and b for equality, the statement
a==b will compare only the values of the references (arrowed lines in Figure
6.20) and not the contents of what is being referenced.

To compare the two objects for equality, it is necessary to invent a new
instance method that compares the values of the numerator and denominator
for each object. Since all classes are subclasses of the Object class, a class that
implements its own method to test whether two distinct objects contain the
same values (a test for equality) should override the equals method of the
Object class.

public boolean equals(Object anyObject)
{

if (anyObject == null || ! (anyObject instanceof Rational))
return false;

else
{

Rational X = (Rational) anyObject;
return ((this.numerator == X.numerator) &&

(this.denominator == X.denominator));
}

}

The instance method equals is invoked using the statement a.equals(b); it
returns a boolean value of either true or false. In the implementation of the
method, the this keyword refers to the object a that invoked the method. The
object b is taken as the parameter x in the method. If the statement

((this.numerator == x.numerator) && (this.denominator == x.denominator));

evaluates to true, then the value true is returned and the contents of the two objects
are the same; otherwise, if the statement evaluates to false, then the value false is

350 Chapter 6 Advanced Concepts with Classes

a

c

1 2

a

c

1 2

1 2

Figure 6.21 Reference versus copy (clone)

returned, indicating that the contents of the two objects differ. Note that this
approach depends on the fact that both rational numbers are in simplest terms.

Copying Objects
In Chapter 2, it was stated that an assignment of one object to another does not
produce a copy of the object, but only a reference to the object. For example,
referring to the rational numbers, the statement c = a will only cause object c
to refer to object a, as illustrated in the top diagram in Figure 6.21. Thus if the
value of object a changed, then object c would no longer make reference to the
original values of object a—it would refer to the new values!

If we want to make a copy of object a and assign this to object c, it is neces-
sary to include a new instance method copy in the class Rational. A subclass
that implements a method to make a copy of an object should override the
clone method from the Object class. The method clone() may only be used
where those subclasses have implemented the Cloneable interface. The
Cloneable interface is a public interface found in the java.lang package
and contains no methods.

public interface Cloneable{}

The interface simply indicates that the class that implements it may be cloned
(copied) by calling the Object method clone(). Since the Rational class
contains a method for copying a rational number, the class Rational may be
written taking into account the inheritance of the method clone from the class
Object. The inherited method is overridden, and the class must also implement
the Cloneable interface.

6.12 Object Properties 351

Since all classes are derived from the class Object, it is not strictly necessary to state
that a subclass extends the Object class.

1i

class Rational extends Object implements Cloneable
{

.

.

.

public Object clone()
{

Object temporary = new Rational(this.numerator, this.denominator);

return temporary;
}

}

The instance method would be invoked using the statement c = a.copy().
The object that invoked the method is a; therefore, any reference to the key-

word this in the implementation of the method refers to the object a. Notice
from the implementation that a new object temporary is instantiated and ini-
tialized with the data values associated with object a. The constructor has
copied the data values of the object a to the object temporary.

The object temporary is then returned from the instance method and
assigned to the object c. Object c now has its own copy of object a. Any subse-
quent changes made to the value of object a will not alter the value of object c.

Objects of type Rational can then be copied and compared for equality as
follows.

Rational a = new Rational(1,2);
Rational b;

// copying an object
b = (Rational)a.clone();

// testing two objects for equality
if (a.equals(b))

Because a.clone() returns an object of type Object, it is necessary to cast the
returned value before the assignment can be made.

352 Chapter 6 Advanced Concepts with Classes

Passing Objects as Parameters
When we pass an object as a parameter to a method, as we did in the add
method in Section 6.11, the reference to the object is available to the method,
not a copy of the object. Therefore, programmers must be very careful when
using an object that has been passed as a parameter, particularly when changes
are being made to objects of the same class.

Consider the following code to implement the divide operation for our
Rational class, remembering that division of fractions is the same as multiply-
ing by the inverse of the second fraction:

// NOTE - this code is incorrect
public Rational divide(Rational X, Rational Y)
{

numerator = X.numerator * Y.denominator;
denominator = X.denominator * Y.numerator;
makeRational();

}

This code will work perfectly under most conditions but will fail under one spe-
cial condition. Suppose that a, b, and c are all objects of class Rational that
represent 1/2, that is, the value of each numerator is 1 and the value of each
denominator is 2. If we use the statement

c.divide(a,b);

then the new value of c will be 1 as expected. But, if instead we use the statement

c.divide(c,c);

then the new value of c will be 1/2, which is incorrect! Do you see why?
The first statement of the method will change the numerator of the object c

to 2 (the numerator of X, which is 1, times the denominator of Y, which is 2). In
one sense, at this instant in time the c object is in an inconsistent state, since its
numerator has been changed but its denominator has not been changed accord-
ingly. Obviously, at this instant in time we should not use c. But that is exactly
what we do in the next statement. Since the parameters are passed by reference,
when the second statement is executed, the operand Y.numerator will be refer-
ring to the current inconsistent contents of the object c, not the contents of c when
the method was invoked. Therefore, the second statement will set the denomi-
nator of the object c to 4 (the denominator of X, which is still 2, times the
numerator of Y, which is also 2). So the object c ends up with the value 2/4 =
1/2, which is incorrect.

You will see that we avoid this problem in our implementation of the
Rational class in the Case Study by using locally defined variables to hold the
intermediate results.

Case Study: Arithmetic of Rational Numbers 353

CASE STUDY

Arithmetic of Rational Numbers
Statement of Problem Devise a class for the addition, subtraction, multiplication, and
division of rational numbers (fractions). The class should also contain methods to print a
rational number and compare rational numbers for equality, as well as copy one rational number
to another.

Write a test program to test all the methods of the class Rational.

Analysis of Classes
The arithmetic associated with rational numbers can be represented by the following expressions.

Addition xn⁄xd � yn⁄yd � (xn.yd�xd.yn)⁄(xd.yd)

Subtraction xn⁄xd � yn⁄yd � (xn.yd�xd.yn)⁄(xd.yd)

Multiplication xn⁄xd � yn⁄yd � (xn.yn)⁄(xd.yd)

Division xn⁄xd ⁄ yn⁄yd � (xn.yd)⁄(xd.yn)

These expressions are used in the instance methods that provide the arithmetic operations on
the rational numbers. Rational numbers must always be expressed in their simplest form. For
example, the fraction 12⁄96 would need to be converted to 1⁄8 by finding the greatest common divi-
sor (gcd) between the numerator and denominator and dividing both the numerator and
denominator by this value. The gcd in the fraction 12⁄96 is 12; thus, if both the numerator
and denominator are divided by 12, the fraction is reduced to its simplest form of 1⁄8.

In calculating the simplest form for a fraction, it is necessary to use two new private meth-
ods; the first implements Euclid’s algorithm for calculating the greatest common divisor, and
the second is an algorithm known as makeRational(), which divides both the numerator and
denominator by the greatest common divisor, taking notice of the signs of the numerator and/or
denominator. Figure 6.22 illustrates the UML representation of the class Rational.

The definition of the class Rational follows. Notice that it contains the two constructors,
together with instance methods to perform arithmetic, comparisons for equality and object
assignment discussed earlier in the chapter, and printing the value of a rational number. This is
the public face of the class Rational. Access to the instance variables numerator and denomi-
nator and to the private methods greatestCommonDivisor and makeRational is denied.

public class Rational implements Cloneable
{

// constructors
public Rational();
public Rational(int num, int denom);

// instance methods
public void add(Rational x, Rational y);

354 Chapter 6 Advanced Concepts with Classes

public void subtract(Rational x, Rational y);
public void multiply(Rational x, Rational y);
public void divide(Rational x, Rational y);
public String toString();
public boolean equals(Object anyObject);
public Object clone();

// private helper methods
private int greatestCommonDivisor(int n, int d);
private void makeRational();

}

Euclid’s algorithm for the method greatestCommonDivisor is as follows:

1. divide n by d and find the remainder
2. while remainder is not zero
3. assign d to n
4. assign remainder to d
5. divide n by d and find remainder
6. assign d to gcd

+Rational

+add

+subtract

+multiply

+divide

+equals

+clone

+toString

-greatestCommonDivisor

-makeRational

Rational

-numerator

-denominator

Figure 6.22 UML representation of the
Rational class

Case Study: Arithmetic of Rational Numbers 355

Desk check for greatestCommonDivisor

n d remainder (remainder==0)? gcd

12 96 12 false

96 12 0 true

12

Algorithm for the method makeRational()
Euclid’s algorithm is used in a private method makeRational() that converts a numerator
and denominator into a rational number in our standard form. The purpose of the code is to
remove the negative signs if the numerator and denominator are both negative, and to move the
negative sign to the numerator if the denominator is negative and the numerator isn’t negative.
Then the rational number is reduced by dividing by the greatest common denominator.

The algorithm for the method makeRational() follows.

1. if the denominator is less than zero
2. multiply the numerator by �1
3. multiply the denominator by �1
4. calculate the greatest common divisor for the abs value(numerator) and denominator
5. divide the numerator by the gcd
6. divide the denominator by the gcd

Desk check for makeRational

numerator denominator gcd (denominator < 0)?

�12 �96 true

12 96 12

1 8

The implementation of the class Rational follows. Apart from the java.lang package,
this class has no other dependencies.

public class Rational implements Cloneable
{

// constant
private static final String EMPTY_STRING = "";

// instance variables
private int numerator;
private int denominator;

356 Chapter 6 Advanced Concepts with Classes

// helper methods
private int greatestCommonDivisor(int n, int d)
{

int remainder = n % d;

while (remainder != 0)
{

n = d;
d = remainder;
remainder = n % d;

}

return d;
}

private void makeRational()
{

int gcd;
int divisor = 0;

if (denominator < 0)
{

numerator = numerator * -1;
denominator = denominator * -1;

}

gcd = greatestCommonDivisor(Math.abs(numerator), denominator);
numerator = numerator / gcd;
denominator = denominator/ gcd;

}

// constructors
/**
The rational class creates an object that represents a proper
fraction.
The default constructor sets the fraction to zero.
*/

public Rational()
{

numerator = 0;
denominator = 1;
makeRational();

}

Case Study: Arithmetic of Rational Numbers 357

/**
The rational class creates an object that represents a proper
fraction. The denominator is not allowed to be zero.
@param num is the value of the numerator of the fraction.
@param denom is the value of the denominator of the fraction.
*/
public Rational(int num, int denom)
{

numerator = num;
if (denom == 0)

denominator = 1;
else

denominator = denom;
makeRational();

}

// instance methods
/**
Adds fraction X to fraction Y.
@param X is fraction X.
@param Y is fraction Y.
*/
public void add(Rational X, Rational Y)
{

numerator = X.numerator * Y.denominator +
Y.numerator * X.denominator;

denominator = X.denominator * Y.denominator;
makeRational();

}

/**
Subtracts fraction Y from fraction X.
@param X is fraction X.
@param Y is fraction Y.
*/
public void subtract(Rational X, Rational Y)
{

numerator = X.numerator * Y.denominator -
Y.numerator * X.denominator;

denominator = X.denominator * Y.denominator;
makeRational();

}

358 Chapter 6 Advanced Concepts with Classes

/**
Multiplies fraction X by fraction Y.
@param X is fraction X.
@param Y is fraction Y.
*/
public void multiply(Rational X, Rational Y)
{

numerator = X.numerator * Y.numerator;
denominator = X.denominator * Y.denominator;
makeRational();

}

/**
Divides fraction X by fraction Y.
@param X is fraction X.
@param Y is fraction Y.
*/
public void divide(Rational X, Rational Y)
{

int holdNum;
holdNum = X.numerator * Y.denominator;
denominator = X.denominator * Y.numerator;
numerator = holdNum;
makeRational();

}

/**
@return a representation of the fraction as a string.
*/
public String toString()
{

String result=EMPTY_STRING;

if (denominator == 1)
result = String.valueOf(numerator);

else
{

result = result.concat(String.valueOf(numerator));
result = result.concat("/");
result = result.concat(String.valueOf(denominator));

}

return result;
}

Case Study: Arithmetic of Rational Numbers 359

/**
Compares two fractions for equality. The first fraction is 'this',
and the second fraction is X.
@param anyObject is one of the fractions being compared for
equality.
@return true if the fractions are the same values, otherwise return
false.
*/
public boolean equals(Object anyObject)
{

if (anyObject == null || ! (anyObject instanceof Rational))
return false;

else
{

Rational X = (Rational) anyObject;
return ((this.numerator == X.numerator) &&

(this.denominator == X.denominator));
}

}

/**
Makes a copy of the 'this’ fraction.
@return a copy of the 'this’ fraction.
*/
public Object clone()
{

Object temporary = new
Rational(this.numerator, this.denominator);

return temporary;
}

}

The methods of the class Rational require testing. Our customary practice has been to create a
class, in this case Example_11, containing a main method to instantiate a number of Rational
objects (fractions), and test the instance methods of the class. The UML diagram for
Example_11 and its dependencies are shown in Figure 6.23.

Example_11 Window

Rational

Figure 6.23 UML representations of class Example_11 and its dependencies

360 Chapter 6 Advanced Concepts with Classes

import avi.*;

class Example_11
{

public static void main(String[] args)
{

Window screen = new Window(“Example_1.java”);
screen.showWindow();

// instantiate Rational objects a, b, c and d
Rational a = new Rational(-8,3);
Rational b = new Rational(9,4);
Rational c = new Rational();
Rational d;

// display values of fractions for a and b
screen.write(“a=” + a + “\n”);
screen.write(“b=” + b + “\n”);

// display results of arithmetic on fractions
c.add(a,b);
screen.write("a+b=" + c + "\n");
c.subtract(a,b);
screen.write("a-b=" + c + "\n");
c.multiply(a,b);
screen.write("a*b=" + c + "\n");
c.divide(a,b);
screen.write("a/b=" + c + "\n");
screen.write("c=" + c + "\n");
c.add(c,c);
screen.write("c+c=" + c + "\n");
screen.write("c=" + c + "\n");
c.divide(c,c);
screen.write("c/c=" + c + "\n");

// make a copy of a fraction and display the result
d=(Rational)a.clone;
screen.write("d=" + d + "\n");

6.13 Garbage Collection and Object Finalization 361

// compare the fractions a and d for equality
if (d.equals(a)) screen.write("Both d and a are equal\n");

}
}

Results from the log file are as follows:

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_11.java date: 7/9/2000 time: 7:22:50

===

a=-8/3
b=9/4
a+b=-5/12
a-b=-59/12
a*b=-6
a/b=-32/27
c=-32/27
c+c=-64/27
c=-64/27
c/c=1
d=-8/3
Both d and a are equal

6.13 Garbage Collection and Object Finalization

When an object is instantiated, the system obtains space for the object from an
area of memory called the heap, reserves that space for use by the object, and
sets the object’s pointer or reference to that space. Through combinations of
cloning, uses of the = and new operations, passing objects as parameters to
methods, and so forth, the number of references to a particular object space can
increase and decrease. If it decreases to zero, then that space is no longer accessi-
ble to the program. We say that it is garbage. Space inefficiencies and program
deterioration can occur if a program accumulates too much garbage.

362 Chapter 6 Advanced Concepts with Classes

In a Java finalizer, methods are not automatically chained. If you have defined a final-
ize() method in a subclass, this may override a finalize() method in a superclass,

and as a consequence, the finalize() method in the superclass will never get called. To
avoid this problem, always include the statement super.finalize(); as the last statement in
the finalizer of the subclass.

1i

Many programming language require the programmer to manage their own
garbage. In other words, it is up to the programmer to prevent garbage from
accumulating. Java, however, contains an automatic garbage collector; conse-
quently, there are no special methods set aside for the destruction of objects and
reclamation of memory to the heap when the objects are no longer required.

The Java interpreter knows which objects it has allocated and which objects
it can return to the heap. When you instantiate an object, you not only get an
allocation of memory from the heap, but a hidden reference counter. The
counter is automatically incremented every time the object is assigned a refer-
ence. Whenever a reference to an object goes out of scope, the counter is auto-
matically decremented. Any object with a reference count of zero is a candidate
for being destroyed and its memory returned to the heap.

Java performs garbage collection at the following times.

■ When the amount of memory remaining in the heap falls below a predeter-
mined level

■ When you specifically ask for garbage collection by calling System.gc()

■ Whenever the Java system has time, generally, when the system is idle wait-
ing for user input

Although garbage collection automatically frees up the memory resources used
by objects, it cannot free up other resources that an object may hold; for exam-
ple, it can’t close an input stream.

Java provides a special instance method to deal with this situation. The
method must be named finalize(), it takes no arguments and returns no
value, and is automatically called before an object is returned to the heap. The
following points should be kept in mind when dealing with finalizers.

■ A method finalizer is automatically invoked before garbage collection of the
object. There is no requirement to explicitly invoke the finalizer.

■ There is no guarantee that a finalizer will be invoked (if the program termi-
nates prematurely) or in what order finalizers will be invoked (if there are sev-
eral).

Summary 363

S U M M A R Y

■ Inheritance is the process by which a subclass receives the data, class
methods, and instance methods from a superclass. In Java, a subclass may
only inherit from one superclass; multiple class inheritance, where one sub-
class inherits from many superclasses, is forbidden.

■ The keyword extends is used to define the subclass/ superclass relationship.

■ Although private variables are inherited by subclass objects, such variables
cannot be accessed directly by the object itself and can be accessed only
through a protected or public access method of the superclass.

■ A protected variable can be accessed from any method of any class in the
same package or a subclass in a different package.

■ The reserved word super may be used in different contexts: super() refers
to the default, no argument constructor, of the superclass; super may also
refer to parameterized constructors of the superclass; super may be used as
a prefix to access inherited variables and inherited methods of a superclass
in a subclass.

■ Normally, Java will automatically call a superclass default constructor from a
subclass constructor. If there is no explicit call to a default superclass con-
structor, then Java will insert such a call. The absence of a superclass
default constructor will result in a compilation error.

■ Constructor calls within a class hierarchy are automatically chained. The
sequence is always subclass to superclass to superclass .. object. The exe-
cution of the bodies of the constructors starts at the object constructor, fol-
lowed by the superclass constructors, and finally the subclass constructor.

■ An object of a subclass may be assigned to an object of its superclass.

■ The only superclass objects that can be assigned to a subclass-typed vari-
able, even with an appropriate cast, are those superclass objects that are
actually subclass objects.

■ A subclass may override an inherited method from a superclass. When the
instance method is invoked by an object from the subclass, the overridden
method is used and not the superclass method.

■ Dynamic method lookup is a technique in which each object has a table of its
methods, and Java searches for the correct versions of any overridden meth-
ods at run time.

■ Java’s ability to decide among methods based on the run-time class is
known as polymorphism.

364 Chapter 6 Advanced Concepts with Classes

■ Polymorphic methods must be part of the same inheritance hierarchy and
support the same set of required methods.

■ Classes may be nested. Every instance of a member class is internally associ-
ated with an instance of the class that defines or contains the member class.

■ The methods of a member class can implicitly refer to the fields defined
within the member class as well as to those defined by any enclosing class,
including private fields of the enclosing class.

■ An abstract class must contain at least one abstract method in addition to
the declaration of variables, constructors, instance methods, and class
methods.

■ An object cannot be instantiated from an abstract class. However, an object
may be declared as being of abstract type.

■ Abstract classes serve as a repository of variables and methods that are
common to many classes lower down the class hierarchy.

■ An interface may only contain constants and/or abstract methods. The inter-
face supplies a specification that is inherited and implemented by a sub-
class. A subclass is allowed to inherit and implement from many interface
classes.

■ A programmer may write as many constructors for a class as necessary. This
implies that the name of the constructor must be overloaded (the same
name used again).

■ The compiler distinguishes between different overloaded constructors and
methods by the number and type of parameters in the formal parameter list.

■ Java does not allow operator overloading except for the use of + for both numeric
addition and string concatenation.

■ The this keyword refers to the current object for which the instance method
or constructor is called.

■ If two objects are to be compared for equality, then a separate method must
be created. The use of the == operator will compare only the references to
the objects and not the instance variables of the objects.

■ Similarly, if the instance variables of one object are to be assigned to
another object, then a separate method must be created. The use of the =
operator will only assign the value of the reference and not allocate extra
memory for the instance variables to be replicated and assigned to an
object.

■ When an object has gone out of scope, the automatic garbage collector will
release the memory occupied by an object’s data to the heap.

Review Questions 365

■ A class may contain a finalizer method for the purpose of releasing other
resources used by an object that are not dealt with by automatic garbage col-
lection.

Review Questions

True or False

1. Constructors and methods may be overloaded.

2. All operators in Java may be overloaded.

3. The operator == is used to compare the instance data of two objects.

4. All classes contain a finalizer method.

5. A finalizer method must be called from within an application program for it to be
invoked.

6. A subclass inherits from a superclass.

7. A class can inherit a variable or method described as private.

8. Any object of a subclass can be assigned to a superclass.

9. Any object of a superclass can be assigned to a subclass.

10. Overloading and overriding a method are the same.

11. A final method may have a subclass.

12. A shadowed variable will prevent access to an inherited variable.

13. An abstract class must contain at least one abstract method.

14. It is perfectly legal to instantiate an object of type abstract class.

15. Several subclasses may inherit from one superclass.

16. A single subclass may inherit from several superclasses.

17. A single subclass may inherit from a single superclass, and also inherit from an interface.

18. A single subclass may inherit from any number of interfaces.

19. When a class implements an interface, instances of that class can be assigned to variables
of the interface type.

Short Answers

20. How many constructors may be defined in a class?

21. Can Java automatically define its own constructor for a class if one is not present?

366 Chapter 6 Advanced Concepts with Classes

22. How and when is the memory allocated to an object’s data released to the heap?

23. Why is it better to write a method to assign one object to another?

24. What is the purpose of the statement System.gc()?

25. What purpose does a default constructor serve?

26. In Figure 6.3, which class is the superclass?

27. Describe inheritance between classes.

28. Where can protected variables and methods be accessed?

29. Give two examples of the reserved word super.

30. When does Java insert a call to the default constructor of a superclass?

31. What do you call the existence of a method in a subclass with the same signature as a
method in the superclass?

32. What is polymorphism?

33. Describe dynamic method lookup.

34. What methods do not use dynamic method lookup?

35. Describe how, in a subclass, you would refer to a variable that was defined far beyond
the immediate superclass.

36. What is an abstract method?

37. How does an interface differ from an abstract class?

38. What is the purpose of an interface? Give one example from the Java API in which an
interface is defined. State the rationale behind defining such an interface.

39. What is the Cloneable interface and why is it used?

Exercises
40. Devise a method to test whether a rational number is greater than another rational

number.

Desk check the skeleton programs implemented in Questions (41) through (45), stating
the output in each case. Describe the principles that explain why each program functions
as it does.

41.

class A
{

public A(Window screen){screen.write("A");}
}

Exercises 367

class B extends A
{

public B(Window screen){screen.write("B");}
}

class C extends B
{

public C(Window screen){screen.write("C");}
}

class Question_41
{

static public void main(String[] args)
{

Window screen = new Window("Question 41");
screen.showWindow();

C object = new C(screen);
}

}

42.

class A
{

protected int X=25;

public A(){}
}

class B extends A
{

protected int X=35;

public B(){}
}

class C extends B
{

protected int X=45;

public C(){}
public void display()
{

Window screen = new Window("Question 42");

368 Chapter 6 Advanced Concepts with Classes

screen.showWindow();

screen.write("X in class C "+X+"\n");
screen.write("X in class C "+this.X+"\n");
screen.write("X in class B "+super.X+"\n");
screen.write("X in class B "+((B)this).X+"\n");
screen.write("X in class A "+((A)this).X+"\n");

}
}

class Question_42
{

static public void main(String[] args)
{

C object = new C();
object.display();

}
}

43.

class Output
{

static Window screen = new Window("Question 43");
}

class A
{

protected int X=25;

public A(){}
public int getX(){return X;}

}

class B extends A
{

protected int X=35;

public B(){}
public int getX()
{

Output.screen.write("value of X in class A "
+super.getX()+"\n");

return X;
}

}

Exercises 369

class Question_43
{

static public void main(String[] args)
{

int X;
B object = new B();

Output.screen.showWindow();

X=object.getX();
Output.screen.write("value of X in class B "+X+”\n”);

}
}

44.

interface A
{

static final int INTERFACE_CONSTANT = 65;
}

class B
{

static final int CLASS_CONSTANT = 45;

public B(){}
}

class C implements A
{

static Window screen = new Window("Question 44");

public C(){}
public void displayConstants()
{

screen.write("value of constant from interface A "+
INTERFACE_CONSTANT+"\n");

screen.write("value of constant from class B "+
B.CLASS_CONSTANT+"\n");

}
}

class Question_44
{

static public void main(String[] args)

370 Chapter 6 Advanced Concepts with Classes

{
C object = new C();

object.displayConstants();
}

}

45.

interface A
{

static final int CONSTANT_A = 65;
}

interface B
{

static final int CONSTANT_B = 75;
}

interface C extends A,B
{

static final int CONSTANT_C = 85;
}

class D implements C
{

static Window screen = new Window("Question 45");

public D(){}
public void displayConstants()
{

screen.showWindow();

screen.write("value of constant from interface A "+
CONSTANT_A+"\n");

screen.write("value of constant from interface B "+
CONSTANT_B+"\n");

screen.write("value of constant from interface C "+
CONSTANT_C+"\n");

}
}

class Question_45
{

Programming Problems 371

static public void main(String[] args)
{

D object = new D();

object.displayConstants();
}

}

Programming Problems
46. Devise a taxonomy of classes for two-dimensional shapes and three-dimensional shapes.

Implement your classes and write a program to test each method within each class.

47. Employees in a company are divided into the classes Employee, HourlyPaid,
SalesCommissioned, and Executive for the purpose of calculating their weekly
wages or monthly salaries. The data to be maintained for each class may be summarized
as follows:

Employee class Name of employee
HourlyPaid class Rate of pay

Total weekly hours worked
SalesCommissioned class Percentage commission on total sales

Total sales for month
Executive class Incremental point on annual salary scale

The methods used in each class may be summarized as follows.

Employee class getName
computePay—as an abstract method

HourlyPaid class getRate
getHours
computePay

SalesCommissioned class getPercentage
getSales
computePay

Executive class getIncrement

computePay

Note: To compute the monthly gross wage of an executive, it is necessary to construct a
one-dimensional array containing an increasing annual salary scale. Each subscript to
the array equates to an incremental point on the salary scale.

Implement the classes and write a test program to verify that the classes function
correctly.

48. The characteristics of airplanes are shown in Figure 6.24.
In addition to the class airplane, include classes for a wide-bodied jet airliner,

supersonic airliner, light jet aircraft, and a military jet.

372 Chapter 6 Advanced Concepts with Classes

Write a program that simulates the movement of each type of airplane over a prede-
fined airspace. Devise a display of the movement of each airplane in a manner similar to
that used in the case study.

49. A city bank offers two different types of bank account, a savings account and a checking
account. To distinguish between the two types of accounts, the savings accounts are
numbered from 000001 and the checking accounts are numbered from 500000. Every
time a new account is opened, the system should generate a new unique account number.

Savings accounts charge no fee, provided the account contains a balance of more than
$100; otherwise, the account has an annual fee of $25.00. Savings accounts pay inter-
est at the rate of 5% per annum.

Checking accounts pay no interest until the balance exceeds $2,500. The interest is then
2.5% per annum. Checking accounts charge a fee of $1 for every transaction.

Devise appropriate classes for the different types of account. Include methods that
you think appropriate for access and manipulation of data in an account.

Write a test program to verify that the classes have been implemented correctly.

50. Rewrite the add, subtract, multiply, and divide methods of the class Rational, such
that each method only takes one parameter. For example, the instance method add is
invoked using the syntax a.add(b), where a and b are objects of type Rational. The
add method adds together the rational numbers a and b and returns the sum. Use more
complex expressions such as a.add(b.add(c)) when testing the newly written meth-
ods of the class Rational.

51. Devise a class for the addition, subtraction, multiplication, and division of complex
numbers. The class should also contain a method to display complex numbers.

A complex number has two parts (A, iB), where A is the real part, B is the imaginary
part, and i = . The following expressions show how arithmetic can be performed
on two complex numbers, so that a real part R and an imaginary I are evaluated.

Addition R = A.real + B.real
I = A.imaginary + B.imaginary

−1

*Note this is only the subsonic cruising speed

Boeing 747 Concorde LearJet Tornado

Climb rate 1400 fpm 3000 fpm 3000 fpm 2500 fpm
Cruising speed* 490 knots 563 knots 440 knots 550 knots
Vortex wake heavy heavy light small
Aircraft class wide-bodied jet super-sonic jet military jet

Figure 6.24 Characteristics of airplanes

Programming Problems 373

Subtraction R = A.real - B.real
I = A.imaginary � B.imaginary

Multiplication R = (A.real * B.real) � (A.imaginary * B.imaginary)
I = (A.real * B.imaginary) + (A.imaginary * B.real)

Division T = A * (B.real � B.imaginary)
N = (B.real)2 � (B.imaginary)2

R = T.real / N
I = T.imaginary / N

Write a program to test the instance methods in the class.

52. Devise a class CharacterString that has the following methods.

class CharacterString
{

// constructor
public CharacterString(char[] value);

// instance methods
// return the length of a CharacterString
public int length();
// delete N characters from this string starting at the Ith
// character
public CharacterString delete(int N, int I);
// insert CharacterString A into this string, starting at
// position I
public CharacterString insert(CharacterString A, int I);
// remove substring A from this string
public CharacterString remove(CharacterString A);
// duplicate this string
public CharacterString duplicate();
// test this string with string A for equality
public boolean equals(CharacterString A);
// display this string
public void display();

}

Write a program to test all the methods of the class CharacterString.

This page intentionally left blank

C H A P T E R 7

Exceptions and
Streams
When designing computer programs, you need to plan for the
possibility of the program failing due to the occurrence of events at
run time. Examples of such events might include trying to gain access
to a cell of an array through a subscript that exceeds the permitted
range, dividing a number by zero in an arithmetic computation,
attempting to open a file that does not exist, and so on. The full list of
events that can cause a program to malfunction is quite considerable!

In this chapter we introduce Java’s exception-handling feature, which when
used, helps to reduce the probability of program malfunction and contributes
toward the design and creation of safer computerized systems.

Additionally, we introduce the concept of data streams, which permit input
from keyboard and data file sources and output to screen and data file destina-
tions. Since the use of data streams also requires a knowledge of handling
exceptions, the topics of exceptions and streams have been included in the
same chapter.

By the end of the chapter you should have an understanding of the following
topics:

■ The hierarchy of classes that support exception handling.

■ Locating in a program where an exception is handled.

■ The clauses throw, try, catch, and finally used in exception handling.

375

376 Chapter 7 Exceptions and Streams

■ Multiple exceptions.

■ Creating your own exception classes.

■ Tokenizing streams.

■ Input and output streams that allow reading from and writing to files.

7.1 Introduction

An exception is an event occurring during the execution of a program that makes
continuation impossible or undesirable. Examples of exceptions include division
by zero, arithmetic overflow, array reference with an index out of bounds, or a
fault condition on a peripheral. Many programming languages respond to an
exception by aborting execution. However, one of the design goals of Java was to
provide the language with sufficient features to enable the programmer to write
robust programs. An exception handler is a piece of program code that is auto-
matically invoked when an exception occurs. The exception handler can take
appropriate remedial action, then either allow resumption of the execution of
the program (at the point where the exception occurred or elsewhere) or termi-
nate the program in a controlled manner.

The purpose of exception handling is to allow a programmer to fix excep-
tions that occur under the following circumstances.

■ Exceptions caused by users. A user may key in the wrong data, or supply
data that is inappropriate to your system. To prevent your program from
crashing you need to develop a mentality for defensive programming that
relies upon exception handling.

■ Exceptions that indicate program errors and are intended to serve as a
mechanism for debugging a program.

■ Errors outside of program control, for example a fault condition on a periph-
eral. A fault-tolerant computer system is capable of providing either full
functionality or reduced functionality after a failure has occurred. Software
fault tolerance may be provided using exception handling. A computer sys-
tem that provides a reduced level of service in spite of the occurrence of at
least one fault is said to be in a state of graceful degradation. Techniques to
handle faults are of vital importance in the design and implementation of
safety-critical computer systems where people’s lives may be put at risk by
the malfunction of a computer-controlled system.

■ Recovery from unusual, but not unexpected events.

In this chapter we will focus primarily on exceptions caused by users, and to a lesser
extent on exceptions that indicate program errors. You may have already encoun-
tered exceptions caused by program errors when writing your own programs!

An exception can be implicit, in which case it is a signal from the Java
Virtual Machine to the program indicating a violation of a semantic constraint

7.2 Exception Classes 377

In both cases it is essential to grasp the concept that an exception is thrown and must
eventually be caught. If you supply an exception handler, then the exception can be dealt

with in the program; otherwise, it will be thrown all the way out of the program to the Java
interpreter, which will handle the exception by reporting on its cause and abandoning the pro-
gram.

1i

of the Java language. For example, attempting to index outside the bounds of an
array would automatically throw an index-out-of-bounds exception.

An exception may also be explicitly thrown from within the program, to sig-
nal that an error condition exists. For example, if input data is acceptable only
within a predefined range, then the programmer might create code that would
throw an exception if data is found to lie outside of this range.

If a method throws an exception, then the exception has to be caught. In all the
programs you have written, the Java interpreter has caught any exceptions that
might have occurred. Within this chapter you will learn how to write Java code
to catch exceptions.

7.2 Exception Classes

An exception is the occurrence of an event that happens when the program is
running. An exception is generally an error condition that interrupts the normal
execution of a program.

An exception in Java is treated as an object that is an instance of the super-
class java.lang.Throwable or an instance of one of its subclasses. A partial
listing of the class Throwable follows.

public class Throwable extends Object
{

// constructors
public Throwable();
public Throwable(String message);

// methods
public Throwable fillInStackTrace();
public String getMessage();
public void printStackTrace();
public void printStackTrace(PrintWriter s);
public String toString();
.
.

}

378 Chapter 7 Exceptions and Streams

Object

Throwable

LinkageError

VirtualMachineError

ClassNotFoundException

InterruptedException

Error Exception

ArithmeticException

ArrayStoreException

RuntimeException

Figure 7.1 Partial class hierarchy including the Throwable, Error, and Exception classes

The functionality of the constructors and methods will be discussed later, in the
context of the program examples found in this chapter.

The superclass Throwable has two immediate subclasses, Error and
Exception. Generally, the first of these classes Error is a superclass to classes
that deal with errors that are unrecoverable such as VirtualMachineError,
which includes such subclasses as InternalError, OutOfMemoryError,
StackOverflowError, and even UnknownError! The second class,
Exception, is the superclass to a number of subclasses that support exceptions
that may be detected and ultimately recovered from.

Figure 7.1 illustrates a partial class hierarchy among the top levels of
exception-handling classes. However, there are many subclasses of the super-
classes Error, Exception, and RuntimeException that are not shown in
Figure 7.1. For a complete list of these classes, refer to the Java API docu-
mentation.

7.3 Catching an Exception 379

From Figure 7.1 it is clear that a number of exception classes exist that
inherit from the superclass Throwable. The Java interpreter is capable of han-
dling all the exceptions that may be generated. Unfortunately, the interpreter
abandons the program after having warned of the exceptional condition. Unless
we are using exceptions to debug parts of a program, we need to be able to catch
the exception within the program and handle it ourselves.

7.3 Catching an Exception

Program Example_1 illustrates what happens when an arithmetic exception is
deliberately created. A print of the log file shows that a divisor of value zero was
deliberately input to cause a run-time arithmetic exception to be thrown. This
represents a typical exception generated by a user.

// program to demonstrate the deliberate creation of
// an arithmetic exception by dividing a number by zero

import avi.*;

class Example_1
{

public static void main(String[] args)
{

Window screen = new Window("Example_1.java","bold","blue",24);
DialogBox inputDividend = new DialogBox(screen,"Dividend?");
DialogBox inputDivisor = new DialogBox(screen,"Divisor?");

int dividend, divisor, quotient;

screen.showWindow();

inputDividend.showDialogBox();
dividend = inputDividend.getInteger();

inputDivisor.showDialogBox();
divisor = inputDivisor.getInteger();

quotient = dividend / divisor;

screen.write(dividend+" / "+divisor+" = "+quotient+"\n");
}

}

380 Chapter 7 Exceptions and Streams

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_1.java date: 3/21/2000 time: 5:3:51

===

At the prompt: Dividend?, you input [25] at the dialog box.

At the prompt: Divisor?, you input [0] at the dialog box.

SYNTAX

Catch Block: catch(exception-class object){statements}

The contents of the log file from the program being executed follows.

If you are using a PC running Microsoft Windows, inspect the contents of the
MSDOS window, and you will see the following message from the Java interpreter.

Exception in thread "main" java.lang.ArithmeticException: / by zero
at Example_1.main(Example_1.java:24)

As you can see, a divide-by-zero exception has been thrown out of the program
and handled by the Java interpreter, which output the exception message. How
can we incorporate into the main method our own code that will handle the
arithmetic exception? The answer is to use a catch block. A catch block con-
tains a single parameter whose type is any class from the superclass Throwable
down through the subclass in the hierarchy.

The catch block is only entered if an exception object is thrown of the
same type as the class stated by the parameter, or the exception object is an
instantiation of a subclass of the parameter. For example,
catch(ArithmeticException ae){..} will allow an exception ae of the type
ArithmeticException to be caught.

However, catch(Exception e){..} will allow an exception e of the type
Exception or any type below Exception in the class hierarchy to be caught.
Therefore, if the exception object is of type ArithmeticException, which is a
subclass of Exception, the exception will still be caught.

The statements within the catch block may report on what caused the
exception and take appropriate action to nullify the error (if appropriate). Since
all the exception classes inherit from the class Throwable, these subclasses may
use the methods defined in Throwable in the catch block to report on the error.

7.3 Catching an Exception 381

SYNTAX

Try Clause: try {statements}

.

.

.
try

catch(..)

.

.

.

Method where NO exception Method where exception raised

exception raised{

}

{

}
}

{

}

.

.

.

catch (..)

.

.

.
try

{

Figure 7.2 Flow of control

A try clause is used to delimit a block of code where the result of any
method calls or other operations might cause an exception. To handle an excep-
tion, a try clause must have at least one catch block.

Figure 7.2 illustrates the flow of control in a method that includes try and
catch blocks, with and without an exception being raised. When no exception
is thrown, the statements of the catch block are not executed. The computer by-
passes the catch block and program execution resumes at the first statement
that follows the end of the catch block (as long as it is not another catch
block). However, when an exception is raised by a statement in the try block,
the remaining statements in the try block are not executed. Control branches
to the appropriate catch block that handles the exception, and the statements of
the catch block are executed. Control then passes to the next executable state-
ment after the catch block (as long as it is not another catch block).

Program Example_2 is a modified version of program Example_1. In
Program Example_2, a catch block has been coded into the main method to

382 Chapter 7 Exceptions and Streams

explicitly catch any arithmetic exception. Both the try block and the catch
block have been embedded within a do..while loop controlled by a boolean
variable. Only when valid data is input will it be possible to exit from the loop.

This technique reinforces the point made earlier, that the purpose of excep-
tion handling is to allow a programmer to fix exceptions caused by user errors.

The test run indicates that when the value of the divisor is deliberately cho-
sen to be zero, an arithmetic exception is thrown when the interpreter attempts
to divide the dividend by zero. The Java interpreter executes the code within the
catch block associated with the arithmetic exception, then exits the catch
block. However, the computer is still within the do..while loop, and the con-
dition to exit from the loop is still false. Only when the divisor is valid is the
arithmetic division performed and the result output. In these circumstances the
catch block is never entered as there is no exception, and the computer exits
from the loop.

// program to demonstrate catching an exception within the program

import avi.*;

class Example_2
{

public static void main(String[] args)
{

Window screen = new Window("Example_2.java","bold","blue",24);
DialogBox inputDividend = new DialogBox(screen,"Dividend?");
DialogBox inputDivisor = new DialogBox(screen,"Divisor?");

int dividend, divisor, quotient;
boolean done = false;

screen.showWindow();

do
{

// try block
try
{

inputDividend.showDialogBox();
dividend = inputDividend.getInteger();

inputDivisor.showDialogBox();
divisor = inputDivisor.getInteger();

quotient = dividend / divisor;
screen.write(dividend+" / "+divisor+" = "

+quotient+"\n");

7.4 Catching Multiple Exceptions 383

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_2.java date: 3/21/2000 time: 5:12:30

===

At the prompt: Dividend?, you input [25] at the dialog box.

At the prompt: Divisor?, you input [0] at the dialog box.

Exception java.lang.ArithmeticException: / by zero caught
At the prompt: Dividend?, you input [25] at the dialog box.

At the prompt: Divisor?, you input [5] at the dialog box.

25 / 5 = 5

done = true;
}

// catch block
catch(ArithmeticException ae)
{

screen.write("Exception "+ae.toString()+
" caught\n");

}

} while (! done);
}

}

Since the class Arithmetic Exception inherits from the class Throwable,
the method toString() may be used on objects of type Arithmetic-
Exception. Remember the purpose of the method toString() is to convert
an object to a string before it may be printed.

The contents of the log file from the running program follows.

7.4 Catching Multiple Exceptions

It is possible that other exceptions may occur when the previous program is exe-
cuted. What if the character o was input instead of the digit 0 (zero)? This
would generate a NumberFormatException, and since there is no catch block

384 Chapter 7 Exceptions and Streams

When using more than one catch block to explicitly trap exceptions, make sure that the
class type for each block is not a superclass of one of the following catch blocks. If you

need to use a superclass in a block as a “catch all” for any exceptions that you have not
explicitly coded, see that the catch block appears as the last block in the sequence.

1i

to accommodate the exception, the Java interpreter will catch the exception, dis-
play a message, and terminate the program.

You may include in a method many catch blocks to explicitly catch a number
of known exceptions. The single catch block in Program Example_2 may be
replaced by the following code.

catch(ArithmeticException ae)
{

screen.write("\nException " + ae.toString() + " caught");
}

catch(NumberFormatException nfe)
{

screen.write("\nException " + nfe.toString() + " caught");
}

Program Example_3 is a modified version of program Example_2; the program
incorporates one try block and two catch blocks. The test results show a divisor
of 0 (zero) causing an arithmetic exception; a divisor of o (lower-case letter) caus-
ing a number format exception, and finally the correct result of the division.

// program to demonstrate catching multiple exceptions within the program

import avi.*;

class Example_3
{

public static void main(String[] args)
{

Window screen = new Window("Example_3.java","bold","blue",24);
DialogBox inputDividend = new DialogBox(screen,"Dividend?");
DialogBox inputDivisor = new DialogBox(screen,"Divisor?");

7.4 Catching Multiple Exceptions 385

int dividend, divisor, quotient;
boolean done = false;

screen.showWindow();

do
{

// try block
try
{

inputDividend.showDialogBox();
dividend = new
Integer(inputDividend.getString()).intValue();

inputDivisor.showDialogBox();
divisor = new
Integer(inputDivisor.getString()).intValue();

quotient = dividend / divisor;
screen.write(dividend+" / "+divisor+" = "+

quotient+"\n");
done = true;

}

// catch blocks
catch(ArithmeticException ae)
{

screen.write("Arithmetic exception caught - "+
ae.toString()+"\n");

}

catch(NumberFormatException nfe)
{

screen.write("Number format exception caught - "+
nfe.toString()+"\n");

}

} while (! done);
}

}

386 Chapter 7 Exceptions and Streams

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_3.java date: 3/21/2000 time: 5:18:38

===

At the prompt: Dividend?, you input [25] at the dialog box.

At the prompt: Divisor?, you input [0] at the dialog box.

Arithmetic exception caught - java.lang.ArithmeticException: / by zero
At the prompt: Dividend?, you input [25] at the dialog box.

At the prompt: Divisor?, you input [o] at the dialog box.

Number format exception caught - java.lang.NumberFormatException: o
At the prompt: Dividend?, you input [25] at the dialog box.

At the prompt: Divisor?, you input [5] at the dialog box.

25 / 5 = 5

Write a program using a dialog box to input the size of an array
at run-time. Also input a series of non-zero, integer values using a dialog box that
are stored in the one-dimensional array. Deliberately terminate the series of inte-
ger values by a sentinel value of zero.

(1) Create an exception handler for numbers that are not in an integer format.
Override the dialog box default when there is an error in the input string, so
that the user is always given another opportunity for inputting a number in
the correct format.

(2) Create an exception handler for the array index being out of bounds.

(3) Create an exception handler for an arithmetic exception.

(4) Calculate and output the arithmetic mean of the numbers in the array.

(5) Use data that will deliberately throw the exceptions listed in (2) and (3) to
test your program, and to ensure that your exception handlers will be invoked.

NOW DO THIS

The contents of the log file from the running program follows.

7.5 Creating Your Own Exception Class 387

7.5 Creating Your Own Exception Class

You may recall from the introduction that a predefined exception may be
thrown as a result of a violation of a semantic constraint of the language. Such
exceptions are covered by the predefined exception classes in the language.
However, what if you want to create your own exception classes in response to
various exceptions that might be thrown from a suite of your own data-valida-
tion routines? Using your own exceptions in a program will require you to create
your own exception classes. Any exception class you define must be a subclass of
the class Throwable. Naturally, the exception class will inherit all the character-
istics of the class Throwable, unless you specifically override the methods.

The constructors of the class Throwable are:

public Throwable(); // default constructor
public Throwable(String message);

If the default constructor is used, then any method invoked by the object will
always refer to the class of the object. For example, from the instantiation:

Throwable ownException = new Throwable();

the statement

screen.write(ownException.toString());

will display java.lang.Throwable.
Note that in the above example that we are explicitly calling the toString

method, unlike the way we used toString in previous programs.
Suppose the constructor that takes a string argument is used this way:

Throwable ownException = new Throwable("THIS IS MY OWN EXCEPTION");

Then the statement screen.write(ownException.toString()); will dis-
play both the name of the exception and the message that was included as the
argument in the constructor:

java.lang.Throwable: THIS IS MY OWN EXCEPTION

The instance method getMessage() will return the message associated with
the argument in the constructor. For example, the statement
screen.write(ownException.getMessage()); will display the message
THIS IS MY OWN EXCEPTION. If the default constructor has been used, then
the message is returned as null.

388 Chapter 7 Exceptions and Streams

If you examine the subclasses of Throwable, the majority of the subclasses
do not add any further functionality to this class. The classes only redefine the
two constructors. Therefore, a typical class definition for your own exception
class might be as follows.

class BadDataException extends Throwable
{

public BadDataException()
{

super();
}

public BadDataException(String message)
{

super(message);
}

}

Note that it is possible to extend other classes further down the hierarchy other
than Throwable. You may care to be more specific about the type of exception
you are extending. For example:

class BadDataException extends RuntimeException{ .. }

might be a better way to denote the classification of this exception. Since
RuntimeException is a subclass of Exception, and Exception is a subclass of
Throwable, then BadDataException must inherit all the functionality of
Throwable.

User exceptions should always extend the appropriate subclass of
Throwable. If the exception indicates a program error, it should extend a run-
time exception. If it is a recoverable exception (e.g. bad data) it should extend
Exception. However, there needs to be a decision taken that an exception is a
way to handle the situation as opposed to another approach (e.g. default values
on bad data as used by the DialogBox component of the avi).

Program Example_4 invites a user to input a single integer, and the program
translates the integer into the name of a day of the week. For example, 0 is
translated to Sunday, 1 is translated to Monday, and so on. However, if the user
inputs an integer that lies outside of the range 0 .. 6, then the method
getDayName throws a BadDataException. This exception is caught within the
main method.

Note that the throws clause is part of the getDayName method’s header
line. This alerts the compiler that this method throws a particular exception, in
this case the BadDataException. Therefore, whenever the getDayName

7.5 Creating Your Own Exception Class 389

method is called, that exception will either have to be handled or thrown again
by the method that is doing the call. More about this in the next subsection.

// program to demonstrate the creation of your own exception class

import avi.*;

class Example_4
{

static String getDayName(int dayNumber) throws BadDataException
{

switch (dayNumber)
{

case 0: return "Sunday";
case 1: return "Monday";
case 2: return "Tuesday";
case 3: return "Wednesday";
case 4: return "Thursday";
case 5: return "Friday";
case 6: return "Saturday";

default: throw new BadDataException
("*** DAY NUMBER NOT IN RANGE 0 .. 6 ***\n");

}
}

public static void main(String[] args)
{

Window screen = new Window("Example_4.java","bold","blue",24);
DialogBox inputDay = new DialogBox(screen,"Day Number?");

screen.showWindow();

int dayNumber;
boolean done = false;

do
{

try
{

inputDay.showDialogBox();
dayNumber = inputDay.getInteger();

390 Chapter 7 Exceptions and Streams

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_4.java date: 3/21/2000 time: 5:46:48

===

At the prompt: Day Number?, you input [7] at the dialog box.

BadDataException: *** DAY NUMBER NOT IN RANGE 0 .. 6 ***
At the prompt: Day Number?, you input [3] at the dialog box.

Day of week Wednesday

Write a program to perform the following.

(1) Input a six-digit account number as a string.

(2) Throw a BadDataException if the string does not contain all digits.

NOW DO THIS

screen.write("Day of week "
+getDayName(dayNumber)+"\n");

done = true;
}

catch(BadDataException bde)
{

screen.write(bde.toString());
}

} while (! done);
}

}

The contents of the log file from the running program follows.

7.6 Throwing an Exception

A simple analogy to help you understand the concept of throwing and propa-
gating an exception follows.

7.6 Throwing an Exception 391

SYNTAX

Throw Statement: throw exception-object

A throws clause lists the exceptions that can be thrown by a method. Do not get the
throws clause confused with a throw statement, which explicitly invokes an exception.

!

A person throws a hot potato (the exception) into a small group of people. If
the first person to catch the potato is wearing oven mitts (the exception han-
dler), that person’s hands do not get burned and that person can safely hold the
potato (handle the exception). However, if a person in the group catches the
potato and is not wearing oven mitts (no exception handler present in the
method), the potato is too hot to handle and is thrown (propagated) to another
person in the group. You can imagine the hot potato being thrown from person
to person, until eventually it is caught by a person who can safely hold the
potato (handle the exception).

A throw statement is executed to indicate that an exception has occurred.
The throw statement must specify an exception object to be thrown. An excep-
tion object is any object that is instantiated from the class Throwable or any
subclass or extension of a class in the exception classes hierarchy.

Figure 7.3 illustrates how a thrown exception searches for a handler. The throw
statement passes control to a catch block. If there is no catch block in the cur-
rent method, the computer exits the method and returns to the calling method.
Again, if there is no catch block to handle the exception, the computer exits
the method and returns to the calling method. The process continues to pass up
through the calling methods until it finds a catch block capable of handling the
exception. Hopefully, you now see the analogy with the hot potato!

If, after returning the exception through all the calling methods, a catch
block cannot be found, the Java interpreter will handle the exception by report-
ing on what caused the exception and then terminate the program.

We have seen how the throws clause is used to list the exceptions that are
thrown by a method, that is, to list those exceptions that might be raised but not
handled within the scope of the method’s execution. When using the throws

392 Chapter 7 Exceptions and Streams

try{methodA () ; }

catch(myException me)
{
.
.

main

methodA

methodB(); ?

methodB

methodC(); ?

methodC

throw new myException();

Call to method A

Call to method B

Call to method C

exception handler in
main method only

no exception
handler in
method A

no exception
handler in
method B

no exception
handler in
method C

Figure 7.3 An exception searching for a handler

clause, you need to state only the superclass of all the exceptions that might
occur within a method. Furthermore, Java does not require exceptions that refer
to the subclasses of Error and RuntimeException to be declared. Practically
any method can generate these exceptions, and it would become tedious to have
to list all the possible subclasses of exceptions that might be thrown.

Given the restriction just mentioned, how do you know which exceptions to
declare in a throws clause? The answer is twofold.

First, look at the documentation associated with the class methods you are
using. The signatures of these methods state which methods throw exceptions.

Second, when you are developing a program, don’t declare any exceptions in
a throws clause, but wait for the compiler to tell you which exceptions you
should have declared.

Program Example_5 implements the logic behind Figure 7.3; it shows the
route the computer takes to find a suitable catch block.

7.6 Throwing an Exception 393

// program to demonstrate finding a catch block

import avi.*;

class MyException extends Throwable
{

public MyException(){super();}
}

class Example_5
{

static Window screen = new Window("Example_5.java");

static public void main(String[] args)
{

try
{

screen.showWindow();
methodA();

}
catch(MyException me)
{

screen.write("The exception has been caught in main.\n");
}

}

static void methodA() throws MyException
{

screen.write("method A called\n");
methodB();

}

static void methodB() throws MyException
{

screen.write("method B called\n");
methodC();

}

static void methodC() throws MyException
{

screen.write("method C called\n");
// an exception must be instantiated before
// it can exist; after which it may be thrown
screen.write("exception thrown in method C\n");
throw new MyException();

}
}

394 Chapter 7 Exceptions and Streams

SYNTAX

Finally Block: finally {statements}

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_5.java date: 3/21/2000 time: 8:0:13

===

method A called
method B called
method C called
exception thrown in method C
The exception has been caught in main.

The contents of the log file from the program being executed follows.

7.7 Finally Blocks

The computer will exit from a try block under the following circumstances.

■ An exception is thrown.

■ The execution of a break, continue, or return statement.

■ Normally, after the execution of the last statement in the block in which
there are no exceptions thrown.

Note a continue statement causes the computer to branch to the end of the last
statement in a loop, but not outside the loop. A break statement will cause the
computer to branch to outside of the loop. You should restrict your use of either
the break or continue statements since they represent unconditional branch-
ing within a program and generally lead to poor programming style.

Java allows the programmer to define a block of code that is guaranteed to
be executed before the computer exits from a try block, regardless of whether an
exception was thrown or a return statement was executed within a try block.

The finally block may be used to release any permanent resources the
method might have allocated, such as in closing an open file.

If there is a local catch block to handle an exception being thrown from the
try block, the code of the catch block is executed before the code of the
finally block. However, if a local catch block does not exist to handle the
exception, then the code of the finally block is executed, and the computer
must return to the calling method to find a catch clause to handle the exception.

7.7 Finally Blocks 395

Program Example_6 demonstrates how a finally block is entered before
the program is abandoned by the interpreter. Within the try block the method
failure() is called. This method throws a valid Java exception,
NullPointerException, which is usually reserved to signal an attempt to
access a field or invoke a method of a null object. However, there is no handler
in this program to handle a NullPointerException. Normally at this point
the interpreter would abandon the program and display the cause of the error.

However, since a finally block has been included, the computer must exe-
cute the statements within this block before abandoning the program.

// program to demonstrate the finally clause

import avi.*;

class Example_6
{

static Window screen = new Window("Example_6.java");

static void failure() throws MyException
{

screen.write("Entered failure() method\n");
throw new NullPointerException();

}

public static void main(String[] args)
{

try
{

screen.showWindow();
screen.write("Entered try block\n");
failure();

}

catch(MyException me)
{

screen.write("Entered catch block with MyException\n");
}

finally
{

screen.write("Entered finally block\n");
screen.write("Uncaught Exception - "+

"NullPointerException");
}

}
}

396 Chapter 7 Exceptions and Streams

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_6.java date: 3/22/2000 time: 1:59:28

===

Entered try block
Entered failure() method
Entered finally block
Uncaught Exception - NullPointerException

The contents of the log file from the program being executed follows.

Here are the contents of the MSDOS window:

Exception in thread "main" java.lang.NullPointerException
at Example_6.failure(Example_6.java:12)
at Example_6.main(Example_6.java:21)

7.8 Using Exception Handling

Exception handling provides a unified approach for dealing with errors in a pro-
gram. By adopting exception handling, you reduce the need to use home-grown
techniques for error detection and recovery.

Never be tempted to use exception handling for purposes other than han-
dling exceptional situations; if you do, you can reduce program clarity and pro-
gram performance. For example, it is poor practice to rely upon the exception
EndOfFileException to be thrown in detecting the end of file. Instead, use an
appropriate method or variable that specifically detects when the end of a file
has been reached.

Remember, with the prudent use of exception handling, a program may con-
tinue executing after dealing with an error situation. This helps ensure that the
software you write is both robust and reliable.

When developing your own classes, state which methods are likely to throw
exceptions. Do not handle the exceptions within these classes, but write the
appropriate exception handlers in the program that uses the classes. Such excep-
tion handlers may be grouped together in one part of the program, thus allow-
ing for a better organization in the layout of your code. In turn this approach
will improve program clarity and enhances program modifiability.

7.8 Using Exception Handling 397

You now have sufficient knowledge to begin to understand how parts of the
avi package have been constructed. For example, in the DialogBox class, the
following listing of the instance method getInteger illustrates how try and
catch blocks are used to detect whether the input string is of the correct format
to be converted into an integer. For example, if the input string represented a
real number, such as 3.789, then clearly this number cannot be converted into
an integer value.

The code also checks for the programmer not showing the dialog box!

public int getInteger()
{

if (visible)
visible = false;

else
dialogBoxNotShownError(bigBrother);

if (inputDatum.equals(EMPTY_STRING))
noInputError(bigBrother);

try
{

return new Integer(inputDatum).intValue();
}
catch (NumberFormatException e)
{

Audio.beep(bigBrother);
Memo error = new Memo(bigBrother,

"Error! "+inputDatum+" is NOT an int type",
"default value Integer.MIN_VALUE returned ",
"CLOSE to continue.",true);

error.showMemo();
}

return Integer.MIN_VALUE;
}

Similarly, the methods getLongInteger(), getFloat(), and getDouble()
all incorporate exception handlers for the respective number types not being in
the correct numerical format. In all these methods, a default value of the mini-
mum of the data type is returned if an error in the input string is detected.

You may wonder why these methods do not just throw an exception and
allow the user to handle it; after all, this was the method advocated a little ear-
lier in this section! Remember the avi package was designed for beginners to
programming, and it was not expected that beginners would know how to han-
dle exceptions until this chapter had been read and understood.

398 Chapter 7 Exceptions and Streams

Do not use the alternative BufferedReader constructor with Microsoft Windows. Using
this constructor may result in spurious errors as data is input via the keyboard. This is a

well-known, and well-documented bug! A suggested work-around is to use the constructor speci-
fied here with two parameters, the second having a buffer size of unity (1).

!

7.9 Stream Input and Output

Input and output of data, to and from a system, can be a complicated task. Java
can handle both byte data, for example representing sounds or pictures, and
character data, representing text. The data can be obtained from many sources,
such as microphones, the keyboard, the mouse, or a file, and sent to many desti-
nations such as the screen, the speakers, or a file. The Java I/O approach is ele-
gant and robust. However, it can be difficult to understand, and a full treatment
of it is beyond the scope of this text. In this chapter we will demonstrate one
way you can do simple input and output without using our avi package, and we
will also address text file input and output. The first topic that you need to
understand is streams.

The term stream refers to any input source or output destination for data.
The java.io package provides many classes that let us define and use steams.
We will use two of these classes, BufferedReader and PrintWriter, for the
input and output of data, respectively. The physical source and destination of the
data is specified by the argument of the constructor of the appropriate class.

Input with BufferedReader
If we examine the class BufferedReader, we see that one of its constructors
has the format:

public BufferedReader(Reader in, int bufferSize);

To instantiate an object of type BufferedReader, you need to supply the con-
structor with a parameter of the correct type—Reader. For our purposes, we
will need to associate the standard input stream, which is usually the keyboard,
with this parameter. The class java.lang.System contains a constant in of
type InputStream that represents the standard input stream and corresponds to
the keyboard of a computer. But how can we associate something of type
InputStream with a parameter that is of type Reader? The answer can be
found by inspecting the hierarchy diagram in Figure 7.4. Notice that the class
Reader is a superclass to the class InputStreamReader. You may recall in
Chapter 6 it was stated that an object of a subclass may be passed as an argument to
a method that requires a parameter of its superclass type. Because of this hierarchical
relationship, we may fulfill the requirement for a parameter of type Reader with
an object of type InputStreamReader.

7.9 Stream Input and Output 399

Object

Reader

BufferedReader InputStreamReader

Figure 7.4 Hierarchy diagram for java.io.BufferedReader and
java.io.InputStreamReader

A constructor from the class InputStreamReader has the format:

public InputStreamReader(InputStream in);

Therefore, it is possible to instantiate an object of type InputStreamReader as
follows:

InputStreamReader stream = new InputStreamReader(System.in);

The object stream may be used to instantiate the object keyboard as follows:

BufferedReader keyboard = new BufferedReader(stream, 1);

Alternatively, we can dispense with stream as an intermediate variable and
combine the two instantiations into one as follows:

BufferedReader keyboard = new
BufferedReader(new InputStreamReader(System.in),1);

The class BufferedReader contains a method readLine that will allow you to
input data of type String at the keyboard by using keyboard.readLine().
Beware! This method can throw an IOException that must be handled either
in your program or by the Java interpreter.

So, that will take care of the input of strings. How do we input data of prim-
itive number types such as int, long, float, and double? The answer is to
input a number as a string and use the appropriate wrapper class to provide the
value of the number.

If you look back at Chapter 4, you will notice that one of the constructors for
the wrapper class Integer defines a constructor that requires a String type for

400 Chapter 7 Exceptions and Streams

Object

Writer

PrintWriter

OutputStream

FilterOutputStream

PrintStream

Figure 7.5 A hierarchy diagram for java.io.PrintWriter and java.io.PrintStream

initialization. The data we input at the keyboard is also of type String; there-
fore, this string value may be used in the constructor—for example, new
Integer(keyboard.readLine()). We now have created an object of type
Integer. To convert the string into a primitive data type int, simply use the
wrapper class instance method intValue(). The whole operation can be per-
formed using the following approach.

Declare a primitive type int number, then assign to the variable number
the result of the converted string data that was input at the keyboard:

int number = new Integer(keyboard.readLine()).intValue();

This technique can also be applied to the data types long, float, and double
since they all have the corresponding wrapper classes and methods for conver-
sion. For example, given the declaration of the primitive type float
realNumber;, the equivalent statement to input this number at the keyboard
would be as follows.

float realNumber = new Float(keyboard.readLine()).floatValue();

A sample program using this input approach will be given after we cover the
output side of the process.

Output with PrintWriter
The class PrintStream is a character output stream, and its position in the
class hierarchy is illustrated in Figure 7.5.

The standard output stream System.out is a constant of type
PrintStream. This means that the constant can be used as an object to any of

7.9 Stream Input and Output 401

the instance methods of the PrintStream class. Therefore, instead of instanti-
ating our own objects of this class, we can (should) just use System.out. This is
just as well since the two constructors of the PrintStream class are now depre-
cated by Sun. Deprecation means that Sun Microsystems, Inc. may not support
these methods in future releases of Java, and if we used them to construct our
own objects, our programs may not work correctly with future Java interpreters.
It is safe to use System.out, however.

If you inspect the PrintStream class you will come across print and
println instance methods that are overloaded to allow for the output of all the
primitive data types and string objects. The functionality and use of the print
method is similar to that of the write method of the Window class in the avi
package. The output, however, is displayed at the operating system window,
which is the MSDOS window in Microsoft Windows system or the terminal
window in a Unix/Solaris system. The println method simply writes a newline
after the output. This, of course, can also be achieved by the use of the escape
sequence character \n, embedded into the end of the output string of a print
statement.

For example,

System.out.print("Hello World\n");

will display the text HELLO WORLD newline in the MSDOS/terminal window.
Similarly, the statement

float grossWage = 250.00f;
System.out.println("Gross weekly wage = " + grossWage);

will display the text Gross weekly wage = 250.0 newline in the MSDOS/
terminal window.

The class PrintWriter is a character output stream, and its position in the
class hierarchy is also illustrated in Figure 7.5. The class PrintWriter super-
seded the class PrintStream in Java 1.1 and therefore is the preferred
approach.

A constructor for the class PrintWriter is:

public PrintWriter(OutputStream out, boolean autoFlush);

This constructor requires two arguments; the first argument is of type
OutputStream and the second argument is of the type boolean. If you inspect
the hierarchy diagram in Figure 7.5, you will notice that an object of type
OutputStream may be replaced by an object of type PrintStream. (Remember
that an object of a subclass may be passed as an argument to a method that
requires a parameter of its superclass type.) Why should we make the substitu-
tion? Simply because we need to find a constant that will represent the standard
output stream. The constant is, of course, System.out. You should set the

402 Chapter 7 Exceptions and Streams

autoFlush argument to true; otherwise, you may not get any information to
appear in the operating system window.

Now that we have the complete picture, it is possible to instantiate an object
of type PrintWriter as follows, where we refer to the generic object
dosWindow to mean an operating system window.

PrintWriter dosWindow = new PrintWriter(System.out, true);

The class PrintWriter contains the same set of methods as PrintStream for
displaying data as strings. Note that when using the print instance method you
can follow it with the flush method. If you do not, the output may not be dis-
played in the operating system window until the next println statement is exe-
cuted by the computer.

Program Example_7 has exactly the same functionality as program
Example_4 in Chapter 2. However, Program Example_7 will allow two integers
to be input via the keyboard and echoed back to the operating system window.
The numbers then have the operations of addition, subtraction, multiplication,
division, and remainder applied to them, and the answers are displayed in the
operating system window.

This example illustrates performing input and output using the methods
described in this chapter, showing that you do not have to use the components
of the audio-visual interface.

// program to input two integer operands and perform the
// arithmetic operations of +, - *, / and % upon them

import java.io.*;

class Example_7
{

static BufferedReader keyboard = new
BufferedReader(new InputStreamReader(System.in),1);
static PrintWriter dosWindow = new PrintWriter(System.out, true);

public static void main(String[] args)
{

// declare two variables of type integer
int first=0, second=0;

// display a heading on the screen
dosWindow.print("Simple Mathematics\n\n");
dosWindow.flush();

// prompt for two integers and catch any exceptions
try
{

7.9 Stream Input and Output 403

Simple Mathematics

First integer? 56
Second integer? 9
56 + 9 = 65
56 - 9 = 47
56 * 9 = 504
56 / 9 = 6
56 % 9 = 2

dosWindow.print("First integer? "); dosWindow.flush();
first = new Integer(keyboard.readLine()).intValue();

dosWindow.print("Second integer? "); dosWindow.flush();
second = new Integer(keyboard.readLine()).intValue();

}

catch (Exception e)
{

dosWindow.println(e.toString()+" - program abandoned\n");
System.exit(1);

}

// display the results of calculations
dosWindow.println(first+" + "+second+" = "+(first+second));
dosWindow.println(first+" - "+second+" = "+(first-second));
dosWindow.println(first+" * "+second+" = "+(first*second));
dosWindow.println(first+" / "+second+" = "+(first/second));
dosWindow.println(first+" % "+second+" = "+(first%second));

}
}

The following are results from the operating system window when the program
was executed.

Modify program Example_7 to perform the following.

(1) Input a long integer and input a double precision real number at either the
MSDOS window or Unix terminal window, depending on the operating system
you are using.

(2) Perform the computations of addition, subtraction, multiplication, division
and remainder, and display the result in the same window used for data
input.

NOW DO THIS

404 Chapter 7 Exceptions and Streams

White space is defined as the ASCII space, horizontal tab, and form-feed characters, as well
as the line terminators newline LF, carriage return CR, and carriage-return line feed CRLF.

1i

7.10 The StreamTokenizer Class

An input stream can be examined and its contents broken up into tokens. For
example, the stream of text:

To be or not to be ...

can be parsed and broken up into tokens of single words delimited by white-
space characters.

Alternatively, the stream of text can be parsed and broken up into tokens of sin-
gle characters. The StreamTokenizer class parses an input stream and,
depending upon the values of parameters set within the class, breaks the stream
up into tokens, allowing the tokens to be inspected one at a time. This approach
often makes it easier to deal with the input to a program.

For your convenience, an abridged version of the StreamTokenizer class
follows. However, you are advised to take time and study the full documentation
of this class.

public class StreamTokenizer extends Object
{

// constants
public static final int TT_EOF;
public static final int TT_EOL;
public static final int TT_NUMBER;
public static final int TT_WORD;

// instance variables
public int ttype;
public String sval;
public double nval;

// constructor
public StreamTokenizer (Reader r);

// instance methods
.
public void eolIsSignificant(boolean flag);

7.10 The StreamTokenizer Class 405

public int nextToken() throws IOException;
public void ordinaryChars(int low, int hi);
public void whitespaceChars(int low, int hi);
public void wordChars(int low, int hi);
.
.

}

Basically, the constructor for this class uses the character input stream Reader
as an argument. This can be the keyboard stream or any defined file stream. For
example,

FileReader file = new FileReader("data.txt");
StreamTokenizer inputStream = new StreamTokenizer(file);

The FileReader class, a subclass of Reader, is useful when you want to read
text (as opposed to binary data) from a file. The FileReader class is a charac-
ter-based input stream used to read characters from a file. You create a
FileReader object by specifying the file to be read. The FileReader construc-
tor internally creates a FileInputStream to read bytes from the specified file,
and use the functionality of the superclass, InputStreamReader, to convert
those bytes from characters to the Unicode characters used by Java.

Once an object of StreamTokenizer has been instantiated, it can be used to
provide a steady stream of tokens to the program. Methods can be used to
define what you mean by a token, white space, and to move to the next token
from the stream. Instance variables can be used to learn the type of the current
token and to access its value.

A token’s type ttype is either TT_EOF, TT_EOL, TT_NUMBER, TT_WORD, or a
nonnegative byte value that was the first byte of the token. Whether or not the
current token has an actual value associated with it, and how you access that
value if it exists, depends on its type as follows:

■ TT_NUMBER: the value of nval is the numerical value of the token.

■ TT_WORD or a string quote character: the value of sval is the string value of
the token.

■ TT_EOF: the end of the file (stream) has been reached.

■ TT_EOL: a line terminator has been reached.

The following methods allow you to specify how tokens are recognized.

wordChars() specifies a range of characters that should be treated as parts of
words. For example, inputStream.wordChars(0x20,0x7F) specifies that
all characters whose Unicodes are in the hexadecimal range 0x20 .. 0x7F
(the printable characters) should be included as characters of words.

406 Chapter 7 Exceptions and Streams

ordinaryChars() specifies characters that are never part of tokens and should
be returned as is. For example, inputStream.ordinaryChars(
0x00,0x7F) specifies that all the ASCII characters do not form tokens and
are returned as the character. This technique is useful when you need to
view the contents of a file.

eolIsSignificant() specifies whether the end-of-line is significant. If it is,
then the TT_EOL constant is returned for end of lines, otherwise; the end of
lines are treated as white-space characters.

The next token from the inputStream is made available by using the instance
method nextToken(), which discards the current token and accesses the iden-
tified stream to obtain the next token, returning the type of that next token. For
example, returning to the stream containing the text:

To be or not to be ...

this stream may be parsed and each word output separately, as follows.

String word;
int tokenType = inputStream.nextToken();
while (tokenType != StreamTokenizer.TT_EOF)
{

word = inputStream.sval;
System.out.println(word);
tokenType = inputStream.nextToken();

}

When the input stream contains a mixture of numbers and words, such as:

395.95 television
550.00 music center
.
.

the stream may be parsed and each token output separately as follows:

inputStream.wordChars(0x20,0x7F);

float price;
String name;

int tokenType = inputStream.nextToken();
while (tokenType != StreamTokenizer.TT_EOF)
{

7.11 Text File Processing 407

In a Windows 95/98/NT environment, the backslash \ used in defining a pathname must
be written as a double backslash \\ to avoid any confusion with an escape character in

the string. If you are using a SUN Solaris system, this modification does not apply since the path
names use a forward slash /.

!

price = (float)inputSream.nval;
inputStream.nextToken();
name = inputStream.sval;
System.out.println(price+"\t"+name);
tokenType = inputStream.nextToken();

}

The next section contains a complete program example that uses the
StreamTokenizer class.

7.11 Text File Processing

In this and previous chapters, input was confined to entering data through a
keyboard or mouse, and output to displaying information on a screen. When
there is a requirement to permanently store data, there is a need to create files.
Data can be written to or read from files held on magnetic media. Common
media that you are likely to use for storing your files include floppy disks that
you carry around or hard disks that are part of the computer.

If the System.in and System.out values are replaced by new values that
relate to computer files, then it will be possible to read input from a file in place
of the keyboard and write output to a file in place of the screen.

A file must be opened before we can gain access to the device for reading or
writing. In Java, when a file is opened, an object is created and a stream is asso-
ciated with the object.

The class FileReader contains a constructor that requires the pathname
(path and filename) of an input file.

FileReader file = new FileReader(pathname);

When a file is no longer required it must be closed. The method defined in the
class FileReader to do this is close().

Program Example_8 demonstrates obtaining input from a file. Suppose a
text file contains data that relate to the insured values of several domestic appli-
ances. For example, a television is insured for $395.95, a music center is insured
for $550.00, a desktop computer is insured for $995.95, and so on.

408 Chapter 7 Exceptions and Streams

395.95 television
550.00 music center
995.95 desktop computer
199.95 microwave oven
299.99 washing machine
149.95 freezer

Note that this file has been created and stored on disk using an editor, in the
same way as you would create and store a program source file. The file name
must be passed to the program as a parameter. For example, if the file is called
goods.txt and is in the same directory as the program, you would enter:

java Example_8 goods.txt

// program to read a file and display a report on the screen

import avi.*;
import java.io.*;

class Example_8
{

static public void main(String[] args) throws IOException
{

// instantiate input file object
FileReader file = new FileReader(args[0]);

// tokens in a line of the text file
String name;
float price;

Window screen = new Window("Example_8.java");
screen.showWindow();

StreamTokenizer inputStream = new StreamTokenizer(file);
inputStream.wordChars(0x20,0x7F);

int tokenType;

// headings
screen.write("Contents of file "+args[0]+"\n\n");
screen.write("PRICE\tAPPLIANCE\n\n");

tokenType = inputStream.nextToken();
while (tokenType != StreamTokenizer.TT_EOF)
{

7.11 Text File Processing 409

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_8.java date: 3/22/2000 time: 3:21:18

===

Contents of file goods.txt

PRICE APPLIANCE

395.95 television
550.00 music center
995.95 desktop computer
199.95 microwave oven
299.99 washing machine
149.95 freezer

Modify program Example_8 to include try and catch blocks,
and a finally block.
(1) The try block should contain code that is likely to generate file processing

exceptions; and the finally block should contain the code to close the file.

(2) Write exception handlers to match the exceptions that are likely to be thrown.

(3) Run the program and use test data that will deliberately throw the anticipated
exceptions.

NOW DO THIS

price = (float)inputStream.nval; inputStream.nextToken();
name = inputStream.sval;
screen.write(price+"\t"+name+"\n");
tokenType = inputStream.nextToken();

}

file.close();
}

}
The contents of the log file from the running program are as follows.

410 Chapter 7 Exceptions and Streams

Next we will see how to write information to a file. The FileWriter class is a
subclass of the OutputStreamWriter class and is useful when you want to
write text (as opposed to binary data) to a file. You create a FileWriter object
by specifying the name of the file to be written to. The FileWriter class cre-
ates an internal FileOutputStream to write bytes to the specified file, and uses
the functionality of its superclass, OutputStreamWriter to convert the
Unicode characters written to the stream characters into bytes.

The class FileWriter contains a constructor that requires the pathname
(path and filename) of an output file. In the example that follows, the path-
name could be given as "results.txt" as follows.

FileWriter output = new FileWriter("results.txt");

However, we have decided to allow the user of the program to pass in the output
file name as a parameter, providing a more robust program. Therefore, we use

FileWriter output = new FileWriter("args[1]");

To provide the same methods that were used with screen output (print,
println, flush) you need to use the object output in the constructor of the
PrintWriter, thus creating a stream object textFile that is associated with
writing to the disk file with the pathname specified in args[1] as follows:

PrintWriter textFile = new PrintWriter(output);

Program Example_9 uses these approaches to modify the contents of the file
used in the previous program so that the price of each appliance is increased by
the rate of inflation; the new price and the name of the appliance are written to
a different text file. For example, it could be executed by the command

java Example_9 goods.txt report.txt

// program to read a file and write a report

import avi.*;
import java.io.*;
import java.text.DecimalFormat;

class Example_9
{

static public void main(String[] args) throws IOException
{

// instantiate input file object
FileReader file = new FileReader(args[0]);

7.11 Text File Processing 411

// instantiate output file object
FileWriter output = new FileWriter(args[1]);
PrintWriter textFile = new PrintWriter(output);

// tokens in a line of the text file
String name;
float price;

final float RATE_OF_INFLATION = 0.025f;

Window screen = new Window("Example_9.java");
screen.showWindow();

StreamTokenizer inputStream = new StreamTokenizer(file);
inputStream.wordChars(0x20,0x7F);

int tokenType;
DecimalFormat accuracy = new DecimalFormat("0.00");

// print headings
screen.write("Contents of file "+args[1]+"\n\n");
screen.write("PRICE\tAPPLIANCE\n\n");

tokenType = inputStream.nextToken();
while (tokenType != StreamTokenizer.TT_EOF)
{

price = (float)inputStream.nval; inputStream.nextToken();
name = inputStream.sval;
price = price + (price * RATE_OF_INFLATION);
screen.write(accuracy.format(price)+"\t"+name+"\n");
textFile.println(accuracy.format(price)+"\t"+name);
tokenType = inputStream.nextToken();

}

file.close();
output.close();

screen.write("\n\nEND OF FILES "+args[0]+" and "+args[1]);
}

}

412 Chapter 7 Exceptions and Streams

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_9.java date: 7/15/2000 time: 4:0:9

===

Contents of file report.txt

PRICE APPLIANCE

405.85 television
563.75 music center
1020.85 desktop computer
204.95 microwave oven
307.49 washing machine
153.70 freezer

END OF FILES goods.txt and report.txt

1 8.95 Art in Athens
2 3.75 Birds of Prey
1 7.55 Eagles in the USA
3 5.25 Gone with the Wind
2 3.75 Hate, Lust, and Love
3 5.95 Math for Adults
3 3.75 Modern Farming
3 5.25 Raiders of Planet X
1 8.95 Splitting the Atom
1 3.75 The Invisible Man
2 3.75 The Otter

The contents of the log file from the program being executed follows.

Book Example Problem
This example demonstrates the combined use of exception handling, stream
tokenizing, and text file input/output.

The following listing of a text file has been created using an editor and
stored under the name books.txt. Each line in the file represent the quantity
in stock, the price of a book, and the title of the book. For example there is one
copy, priced at $8.95, of Art in Athens.

7.11 Text File Processing 413

4 5.95 The Tempest
2 5.95 The Trojan Wars
2 3.75 Under the Seas
2 7.55 Vampire Bats

STOCK REPORT ON BOOKS
=====================

*** REORDER *** 1 8.95 Art in Athens
2 3.75 Birds of Prey

*** REORDER *** 1 7.55 Eagles in the USA
3 5.25 Gone with the Wind
2 3.75 Hate, Lust, and Love
3 5.95 Math for Adults
3 3.75 Modern Farming
3 5.25 Raiders of Planet X

*** REORDER *** 1 8.95 Splitting the Atom
*** REORDER *** 1 3.75 The Invisible Man

2 3.75 The Otter
4 5.95 The Tempest
2 5.95 The Trojan Wars
2 3.75 Under the Seas
2 7.55 Vampire Bats

Number of books in stock 32

Retail value of books in stock $170.60

Write a program to read each line of the file and produce a text file of a report
similar to that illustrated below.

Notice from the design of the document that when the stock level falls to
one item, the report indicates that the stock should be replenished. Notice also
that totals are calculated for the number of books and for the value of all the
books in stock and printed at the end of the report.

Note: If our solution to this problem were to be used in a larger system that
actually helped manage a book inventory, we would approach it in a different
fashion, defining a book class, and making sure that our code interfaced well
with other inventory code. However, our main concern here is to demonstrate

414 Chapter 7 Exceptions and Streams

the recently covered Java constructs, and therefore we pursue a more straightfor-
ward design.

Pseudocode of Main method
1. open files

2. tokenize input stream

3. write headings for stock report

4. get next token type

5. while token type not end of file

6. assign token to quantity of books

7. get next token

8. assign token to price of book

9. get next token

10. assign token to title of book

11. if quantity < re-order level

12. write re-order to stock report

13. else

14. write spaces to stock report

15. increase total quantity by quantity

16. increase total price by price

17. get next token type

18. write total quantity to stock report

19. write total prices to stock report

20. close files

// program to read a file and write a report
// any errors are reported to the operating system window

import java.io.*;
import java.text.DecimalFormat;

class Example_10
{

static public void main(String[] args) throws IOException
{

7.11 Text File Processing 415

final int REORDER_LEVEL = 1;

FileReader inputFile = null;
FileWriter outputFile = null;

// tokens in a line of the text file
String title;
float price;
int quantity;

int totalQuantity = 0;
float totalPrice = 0.0f;

// attempt to open the filenames specified in the command line
try
{

inputFile = new FileReader(args[0]);
outputFile = new FileWriter(args[1]);

}

catch(Exception e)
{

if (e instanceof FileNotFoundException)
{

System.out.println("FILENAME "+args[0]+
" NOT FOUND");

}

if (e instanceof ArrayIndexOutOfBoundsException)
{

System.out.println("WRONG NUMBER OF FILES SPECIFIED "+
"IN COMMAND LINE");

}

System.exit(1);
}

// tokenize input stream
StreamTokenizer inputStream = new StreamTokenizer(inputFile);
inputStream.wordChars(0x20,0x7F);

// instantiate PrintWriter object
PrintWriter textFile = new PrintWriter(outputFile);

// write heading to output file
textFile.println("\t\tSTOCK REPORT ON BOOKS");

416 Chapter 7 Exceptions and Streams

textFile.println("\t\t=====================\n");

// WARNING! - nextToken can raise an IOException that is not
// handled by the main method in this class.
// get type of next token
int tokenType = inputStream.nextToken();
// while not end of file
while (tokenType != StreamTokenizer.TT_EOF)
{

// read quantity price and title from input stream
quantity = (int)inputStream.nval;
inputStream.nextToken();
price = (float)inputStream.nval;
inputStream.nextToken();
title = inputStream.sval;

// test for reorder level
if (quantity <= REORDER_LEVEL)

textFile.print("*** REORDER ***\t");
else

textFile.print(" \t");

// write line to output file
textFile.println(quantity+"\t"+price+"\t"+title);

// update cumulative quantity and price
totalQuantity = totalQuantity+quantity;
totalPrice = totalPrice+(price*quantity);

// get type of next token
tokenType = inputStream.nextToken();

}

// write totals to output file
DecimalFormat accuracy = new DecimalFormat("0.00");
textFile.println("\nNumber of books in stock "+totalQuantity);
textFile.println("\nRetail value of books in stock $"+

accuracy.format(totalPrice));
// close files
inputFile.close();
outputFile.close();

}
}

7.11 Text File Processing 417

D:\chap_6>java Example_10
WRONG NUMBER OF FILES SPECIFIED IN COMMAND LINE

D:\chap_6>java Example_10 books.txt
WRONG NUMBER OF FILES SPECIFIED IN COMMAND LINE

D:\chap_6>java Example_10 stock.txt
FILENAME stock.txt NOT FOUND

D:\chap_6>java Example_10 books.txt stock_report.txt

D:\chap_6>type stock_report.txt

STOCK REPORT ON BOOKS
=====================

*** REORDER *** 1 8.95 Art in Athens
2 3.75 Birds of Prey

*** REORDER *** 1 7.55 Eagles in the USA
3 5.25 Gone with the Wind
2 3.75 Hate, Lust, and Love
3 5.95 Math for Adults
3 3.75 Modern Farming
3 5.25 Raiders of Planet X

*** REORDER *** 1 8.95 Splitting the Atom
*** REORDER *** 1 3.75 The Invisible Man

2 3.75 The Otter
4 5.95 The Tempest
2 5.95 The Trojan Wars
2 3.75 Under the Seas
2 7.55 Vampire Bats

Number of books in stock 32

Retail value of books in stock $170.60

The results from running this program four times follows.

Another Example: Using a File Viewer
Using the StringTokenizer class, the following handy FileViewer class will
permit any text file to be viewed on the screen. Note that all characters are
regarded as tokens and can be treated individually.

418 Chapter 7 Exceptions and Streams

// Class FileViewer will display the contents of a text file on
// the screen of a window.

// FileReader throws a FileNotFoundException, and
// nextToken throws an IOException.
// Since there are no exception handlers in the class
// FileViewer the exceptions are thrown from the class.

import avi.*;
import java.io.*;

public class FileViewer
{

private String contents=new String();

/**
The FileViewer class will allow an object to be created that will
display the entire contents of a text file on the screen.
@param filename is the pathname and filename of the text file to be
displayed.
*/
public FileViewer(String filename) throws FileNotFoundException,

IOException
{

// WARNING! - FileReader throws a FileNotFoundException
FileReader file = new FileReader(filename);
StreamTokenizer inputStream = new StreamTokenizer(file);
inputStream.ordinaryChars(0x00,0x7F);

// WARNING! - nextToken throws an IOException
int tokenType = inputStream.nextToken();
while (tokenType != StreamTokenizer.TT_EOF)
{

contents = contents+String.valueOf((char)tokenType);
tokenType = inputStream.nextToken();

}
}

/**
Displays the entire contents of the text file on the screen.
@param screen is the container class for displaying the text.
*/
public void viewFile(Window screen)
{

screen.write(contents);
}

}

7.12 The FileDialog Class 419

Write a program using the FileViewer class to display the
contents of a text file of your choice.
NOW DO THIS

7.12 The FileDialog Class

We have three ways to input the name of a file that we want to use in a program.

■ Code the name of the file into the program during program construction.
This technique is very inflexible; if you want to change the name of the file,
you must amend and recompile the class.

■ Pass the name of the file as an argument in the command line to the formal
parameter of the main method. This technique will allow you to pass as many
parameters as are necessary. It is an improvement over the first technique since
it allows you to choose the file you will use when you execute the program.

■ Input the name, as a string, to an avi dialog box during run time. Once
again, you retain the flexibility of being able to choose the name of your file
at run time. In fact, you extend the time available for entering the file name
even longer than in the previous method.

Note that in the latter two approaches you need to worry about a user supplying
a filename that does not exist!

An alternative way to input the name of a file is to use a pre-written Java
class called the FileDialog class from the abstract windowing toolkit (awt)
package. Chapter 8 is devoted to the awt; however, for now we will study the
FileDialog class within this package. This class allows the user of our program
to choose a file with the standard Windows approach. In other words, the user
is able to browse the file system and select the file for use.

A partial listing of the FileDialog class follows.

public class FileDialog extends Dialog
{

// constructors
.
public FileDialog(Frame parent, String title, int mode);
.

// constants
public static final int LOAD;
public static final int SAVE;

// public instance methods
.
public String getDirectory();

420 Chapter 7 Exceptions and Streams

public String getFile();
.
.

}

This class represents a file-selection dialog box. The constants LOAD and
SAVE are values of an optional constructor argument that specifies whether the
dialog box should be an Open File or a Save As dialog. Once the selection from
the dialog box has been made, the name of the directory and the name of the
file can be retrieved within the program by using the instance methods
getDirectory() and getFile(), respectively.

In Program Example_11, a file dialog box is used to input the name of a file.
The contents of this file are then displayed on the screen using the method
viewFile() from the FileViewer class listed at the end of the previous section.

The constructor for the FileDialog class requires three arguments:

parent—the name of the container class for the file dialog box. Since parent
is of type Frame, and the avi class Window is a subclass of Frame, we can
use the screen object of the avi Window for this argument.

title—an optional string that will appear in the title bar of the file dialog box.
If you use an empty string argument, the title defaults to Open.

mode—either the constant FileDialog.LOAD or the constant
FileDialog.SAVE.

Note: The FileDialog class does not contain a method to show the dialog box
on the screen. A show() method is inherited from a superclass in the same hier-
archy. The dialog box is automatically hidden from view once the button is
pressed to signify that the file should be opened.

// program to view the contents of a text file

import avi.*;
import java.awt.FileDialog;
import java.io.*;
class Example_11
{

public static void main(String[] args)
{

Window screen = new
Window("Example_11.java","plain","black",14);
screen.showWindow();

Memo error=null;

// a FileDialog box enables a user to examine all the
// directories, subdirectories and files on their computer
// system

7.12 The FileDialog Class 421

FileDialog inputFile = new
FileDialog(screen, "", FileDialog.LOAD);
inputFile.show();

// get directory and filename from the file dialog box
String directory = inputFile.getDirectory();
String filename = inputFile.getFile();

// test for user cancelling the request
if (directory == null || filename == null) System.exit(1);

try
{

// instantiate a file viewer object
FileViewer file = new FileViewer(directory+filename);
// display the contents of a file on the screen
file.viewFile(screen);

}

catch(FileNotFoundException fnfe)
{

error = new Memo(screen,directory+filename,
"not found","CLOSE TO QUIT",true);

error.showMemo();
}

catch(IOException ioe)
{

error = new Memo(screen,"IO exception","",
"CLOSE TO QUIT",true);

error.showMemo();
}

}
}

Note: If the user chooses to press the CANCEL button on the FileDialog box,
this will generate a null directory and a null filename entry. Program
Example_11 explicitly checks for this condition, and exits from the program
back to the operating system. The statement System.exit(1) will allow the
execution of a program to be terminated.

Screenshots from the running program follow:

422 Chapter 7 Exceptions and Streams

CASE STUDY

Reporting on the Statistics of a Text File

Statement of the Problem
Create a class TextFileAnalyzer that will read a text file and return the number of characters
and vowels, and also return the frequency of occurrence of vowels, consonants, and words in the
text file.

Create a second class to test the functionality of all the methods of the TextFileAnalyzer
class, and also display the contents of the file.

Case Study: Reporting on the Statistics of a Text File 423

Identification of classes and methods
The problem has stated the two classes to be created—(1) TextFileAnalyzer and (2) a class
containing a main method to test the functionality of the methods of the TextFileAnalyzer
class; this second class we will call Example_12. Note that one of the functions of Example_12 is
to display the contents of the file. However, we have already created a class FileViewer to display
the contents of any text file; therefore, it would be prudent to reuse this class in Example_12.

If we examine the verbs in the description of the problem, then it is clear that read and
return may offer suitable candidate methods. The class constructor will enable text to be read
from a file. The methods of the class must return the number of characters (this includes all the
nonprinting characters such as CR and LF), return the number of vowels, return the classification
of the frequency of vowels, return the number of consonants, and return the number of words.

The constructor and methods for class TextFileAnalyzer follow. For the UML diagram,
see Figure 7.6.

public class TextFileAnalyzer
{

public TextFileAnalyzer(String filename) throws FileNotFoundException,
IOException;

public int getCharacters();
public int getVowels();
public int[] getVowelFrequency();
public int getWords();
public int getConsonants();

}

TextFileAnalyzer

-characters
-frequency
-consonants
-words

+TextFileAnalyzer
+getCharacters
+getVowels
+getVowelFrequency
+getWords
+getConsonants

Figure 7.6 The UML diagram for the class TextFileAnalyzer

424 Chapter 7 Exceptions and Streams

The parameter of the constructor is the name of the text file. Since this file needs to be
opened and read by the constructor, the FileReader constructor might throw an exception if
the file cannot be found, and the nextToken method from the StreamTokenizer class might
throw an exception when reading tokens from a stream. These exceptions are not handled by
the constructor; therefore, should either exception occur, the constructor throws a
FileNotFoundException and an IOException.

The instance methods to getCharacters, getVowels, getVowelFrequency, getWords,
and getConsonants all return the values of their respective instance variables. The coding of
these methods is so trivial that their respective designs will not be considered here. The majority
of the text analysis is performed by the constructor. Therefore, its design and testing is included
here in detail. Note that the instance variable frequency is a one-dimensional array for storing
the frequency of occurrence of each vowel.

Algorithm Development for the Constructor
1. open input stream
2. read stream and split line into tokens
3. read next token
4. while token type not end of file
5. get character from stream
6. convert character to lowercase
7. increase character count by 1
8. test character for vowel
9. test character for consonant

10. test character for end of word delimiter
11. read next token
12. close input stream

Parts of this algorithm can be refined further.

8. test character for a vowel
8.1 for each vowel
8.2 if character is vowel
8.3 increase frequency of vowel by 1

9. test character for consonant
9.1 if character in range ‘b’ .. ‘d‘ or
9.2 character in range ‘f ’ .. ‘h’ or
9.3 character in range ‘j’ .. ‘n’ or
9.4 character in range ‘p’ .. ‘t’ or
9.5 character in range ‘v’ .. ‘z’ then
9.6 increase consonant counter by 1

10. test character for end of word delimiter
10.1 if character is a SPACE or

Case Study: Reporting on the Statistics of a Text File 425

10.2 character is end of line then
10.3 increase word counter by 1

Testing the Constructor
The test data is the phrase To be or not to beCRLFeof.

identifiers value(s)

characters 0 1 2 3 4 5 6 7 8 9 10

frequency[0] 0

frequency[1] 0 1

frequency[2] 0

frequency[3] 0 1 2

frequency[4] 0

consonants 0 1 2 3 4

words 0 1 2 3

inputStream To be or not to be CRLFeof

character T o (space) b e (space) o r (space) n

end of file? false false false false false false false false false false

character (to

lowercase) t o (space) b e (space) o r (space) n

vowel? false true false false true false true false false false

consonant? true false false true false false false true false true

word delimiter? false false true false false true false false true false

identifiers value(s)

characters 10 11 12 13 14 15 16 17 18 19 20

frequency[0] 0 0

frequency[1] 1 2 2

frequency[2] 0 0

frequency[3] 2 3 4 4

frequency[4] 0 0

consonants 4 5 6 7 7

words 3 4 5 6 6

426 Chapter 7 Exceptions and Streams

inputStream To be or not to beCRLFeof

character o t (space) t o (space) b e CR LF

end of file? false false false false false false false false false false

character (to

lowercase) o t (space) t o (space) b e - -

vowel? true false false false true false false true false false

consonant? false true false true false false true false false false

word delimiter? false false true false false true false false true false

Note that the next character to be analyzed after the LF (line feed) is the end-of-file character. At
this point, the condition to test for the end of file will be true and the while loop will terminate.

The dependencies for the TextFileAnalyzer class are depicted in Figure 7.7.

TextFileAnalyzer FileReader

StreamTokenizer

Figure 7.7 UML dependency diagram for the TextFileAnalyzer class

import java.io.*;

public class TextFileAnalyzer
{

// class constant
private static int SPACE = 0x0020;
private static char[] vowels = {'a','e','i','o','u'};

// instance variables
private int characters; // character counter
private int[] frequency = new int[5]; // occurrence of each

// vowel
private int consonants; // consonant counter
private int words; // word counter

Case Study: Reporting on the Statistics of a Text File 427

/**
The TextFileAnalyzer class will allow an object to be created from a
text file and return the following data about the text file:

- the number of characters;
- the number of vowels;
- the frequency of each vowel;
- the number of consonants;
- the number of words.

@param filename is the pathname and filename of the text file to be
analyzed.
*/
public TextFileAnalyzer(String filename) throws

FileNotFoundException,
IOException

{
char character;

// WARNING! - FileReader throws a FileNotFoundException
FileReader file = new FileReader(filename);
StreamTokenizer inputStream = new StreamTokenizer(file);
inputStream.ordinaryChars(0x00,0x7F);
inputStream.eolIsSignificant(true);

// WARNING! - nextToken throws an IOException
int tokenType = inputStream.nextToken();
while (tokenType != StreamTokenizer.TT_EOF)
{

// convert token type to primitive char type
character = (char)tokenType;

// convert character to lowercase for purposes of
// comparison
character = Character.toLowerCase(character);

// increase character counter
characters++;

// process vowels
for (int index=0; index != vowels.length; index++)
{

if (character == vowels[index])

428 Chapter 7 Exceptions and Streams

{
frequency[index]++;
break;

}
}

// process consonants
if ((character >= 'b' && character <= 'd') ||

(character >= 'f' && character <= 'h') ||
(character >= 'j' && character <= 'n') ||
(character >= 'p' && character <= 't') ||
(character >= 'v' && character <= 'z'))

{
consonants++;

}

// process words
if ((character == (char)SPACE) ||

(tokenType == StreamTokenizer.TT_EOL)) words++;

tokenType = inputStream.nextToken();
}

file.close();
}

/**
Return the total number of characters in the text.
@return The number of characters in the text file.
*/
public int getCharacters()
{

return characters;
}

/**
Return the total number of vowels in the text.
@return The number of vowels in the text file.
*/
public int getVowels()
{

int sum=0;

Case Study: Reporting on the Statistics of a Text File 429

for (int index=0; index != frequency.length; index++)
sum = sum + frequency[index];

return sum;
}

/**
Return the frequency of occurrence of vowels in the text.
@return The frequency of occurrence of vowels in the text file.
*/
public int[] getVowelFrequency()
{

return frequency;
}

/**
Return the total number of words in text file.
@return The total number of words in text file.
*/
public int getWords()
{

return words;
}

/**
Return the total number of consonants in text file.
@return The total number of consonants in text file.
*/
public int getConsonants()
{

return consonants;
}

/**
Return the literal values of the vowels.
@return The literal values of each vowel.
*/
public static char[] getVowelLiterals()
{

return vowels;
}

}

430 Chapter 7 Exceptions and Streams

Figures 7.8 and 7.9 depict the class and dependency diagrams for the class Example_12.

import avi.*;
import java.awt.FileDialog;
import java.io.*;

class Example_12
{

public static void main(String[] args)
{

int[] frequency;
char[] vowels = TextFileAnalyzer.getVowelLiterals();
// open window
Window screen = new
Window("Example_12.java","plain","black",14);
screen.showWindow();

// open file dialog box
FileDialog file = new FileDialog(screen,"",FileDialog.LOAD);
file.show();

String pathname = file.getDirectory();
String filename = file.getFile();

Example_12

main

Figure 7.8 UML class diagram for
Example_12

Example_12 Window

java.awt.FileDialog

FileViewer

TextFileAnalyzer

Figure 7.9 UML dependency diagram for the class Example_12

Case Study: Reporting on the Statistics of a Text File 431

try
{

// create FileViewer and TextFileAnalyzer objects
FileViewer passageFromShakespeare = new
FileViewer(pathname+filename);
TextFileAnalyzer aLittleShakespeare = new
TextFileAnalyzer(pathname+filename);

// output information about file
screen.write("Name of file being analyzed: "+

filename+"\n\n");
screen.write("Contents of file ..\n\n");
passageFromShakespeare.viewFile(screen);

screen.write("\n\nStatistics from the file - "+
"numbers of\n\n");

screen.write("\tcharacters "+
aLittleShakespeare.getCharacters()+"\n");

screen.write("\twords "+aLittleShakespeare.getWords()+
"\n");

screen.write("\tconsonants"+
aLittleShakespeare.getConsonants()+"\n");

screen.write("\tvowels "+aLittleShakespeare.getVowels()+
"\n\n");

frequency = aLittleShakespeare.getVowelFrequency();
screen.write("vowel\tnumber\n");
for (int index=0; index != frequency.length; index++)

screen.write(vowels[index]+"\t"+
frequency[index]+"\n");

screen.write("\n\n\n\nCLOSE WINDOW TO QUIT");
}

catch(Exception e)
{

Memo error=null;

if (e instanceof FileNotFoundException)
{

error = new Memo(screen,pathname+filename,
"NOT FOUND","CLOSE TO QUIT",
true);

}

432 Chapter 7 Exceptions and Streams

if (e instanceof IOException)
{

error = new Memo(screen,"","IO Exception raised",
"CLOSE TO QUIT",true);

}

error.showMemo();
screen.closeWindowAndExit();

}
}

}

A screen shot from the running program follows.

Create your own text file and re-run program Example_12
using the new text file.
NOW DO THIS

Summary 433

S U M M A R Y

■ An exception is the occurrence of an event that happens when the program
is running.

■ In Java, an exception is treated as an object that is an instance of the super-
class Throwable, or an instance of one of its subclasses.

■ The superclass Throwable has two subclasses, Error and Exception.

■ There exists a list of subclasses to RuntimeException, which itself is a
subclass of Exception.

■ As a general rule, programmers should handle explicit exceptions from the
subclass of Exception and not the subclass of Error or
RuntimeException.

■ All exceptions that are thrown must be eventually caught.

■ A method might not always handle an exception but instead propagates it for
another method to eventually handle.

■ Exceptions are handled using a catch block.

■ Only an exception that is the same class, or a subclass, of the catch block
parameter may be handled by the catch block.

■ A try clause is used to delimit a block of code in which the result of a
method call or other operation might cause an exception.

■ If an exception is raised within a try block, then the computer branches to
the corresponding catch block. After the execution of the appropriate catch
block, the computer does not return to the next executable statement in the
try block, but continues to execute statements that follow the catch block.

■ When there is no exception raised within a try block, the corresponding
catch block is ignored and the computer continues to execute statements
after the catch block.

■ Whenever there are multiple catch blocks, the catch block with the lowest
subclass parameter must be placed first in the order of the catch blocks.
The catch block with a superclass parameter must be placed last in the
order of the catch blocks. Failure to observe this rule will result in a super-
class catch block overshadowing a subclass catch block and the compiler
reporting this occurrence as an error.

■ Multiple exceptions may be caught by either the use of multiple catch
blocks or by a single superclass catch block, with sufficient logic to deter-
mine which exception was thrown.

434 Chapter 7 Exceptions and Streams

■ You may create your own exception classes; however, these classes should
extend one of the superclasses such as Throwable or Exception.

■ An exception is explicitly thrown using a throw statement. A throw state-
ment must specify an exception object to be thrown.

■ A throws clause lists the exceptions that can be thrown by a method.

■ The instance method toString()in the class Throwable returns as a
string the name of the exception class.

■ The instance method getMessage()in the class Throwable returns the
message used in the instantiation of the exception object.

■ Whenever a block of statements needs to be executed before the computer
exits from a try block, declare these statements in a finally block.

■ Good practice dictates that you should state which methods in a class throw
exceptions. Write the exception handlers for these exceptions in the program
that uses the methods.

■ A keyboard may be replaced by a file for the input of data to a program.

■ A screen may be replaced by a file for the output of the results from a program.

■ Files must be opened before they can be used and closed when no longer
needed in a program.

■ A line of text may be divided into individual tokens, where each token repre-
sents an item of data.

Review Questions
True or False

1. A RuntimeException is a superclass of an ArithmeticException.

2. The order of try and catch blocks is of no significance.

3. A single try block may have corresponding multiple catch blocks.

4. The throws clause invokes an exception.

5. A catch clause may have more than one parameter.

6. Catch blocks must immediately follow a try block.

7. A catch block is never executed if the corresponding exception is not raised.

Exercises 435

Short Answer

8. What is an exception?

9. How is an exception invoked?

10. If a method cannot handle an exception, what happens to the exception?

11. Inspect the class java.lang.Math. State which of the class methods throw exceptions,
and why you think the methods need to do this.

12. Repeat the previous question, but this time look at the methods in the class
java.lang.String.

13. Define try, catch, and finally blocks.

14. What is the function of the instance method toString() and when is it used?

15. What does the instanceof operator return?

16. Why do the methods found in Java classes throw exceptions rather than handling them
within the class?

17. How should multiple catch blocks be arranged?

18. What restrictions are imposed on creating your own exception class?

19. What is the difference between a throw clause and a throws clause?

20. If a catch block does not exist in a method, how is the corresponding throws clause
handled?

21. What is a text file?

22. What is a token?

23. What is wrong with the following declaration?

static BufferedReader keyboard = new BufferedReader(System.out);

24. If you inspect the class PrintStream, why is it possible to use the methods print and
println to output numbers of type int, long, real, and double?

Exercises
25. Detect the error in the following code.

try
{

methodA();
}

436 Chapter 7 Exceptions and Streams

methodB();

catch(Throwable t){}

26. Detect the error in the following code.

try
{

FileReader file = new FileReader("data.bin");
BufferedReader input = new BufferedReader(file);

}
catch(FileNotFoundException f){System.exit(1);}
Record data = new Record();
data.readRecord(input);

27. Is the following structure of try and catch blocks legal?

try
{

.

.
try
{

.

.
}
catch(..){}
.
.

}
catch (..){}

28. Detect the error in the following catch block.

catch (Error e)
{

if (e instanceof ArithmeticException) ..
if (e instanceof ArrayStoreException) ..

}

29. Comment upon the legality of the following catch blocks.

try
{

.

.
}
catch (Throwable t){..}
catch (Exception e){..}

Exercises 437

catch (ClassNotFoundException c){..}
catch (InterruptedException i){..}

30. Detect the errors in the following code.

static public void main(String[] args)
{

methodA();
}

static void methodA() throw newTypeOfException
{

.

.
throws newTypeOfException;

}

31. Desk check the following code. What type of exception will cause the catch block to be
executed?

int[] array = {1,2,3,4,5};
int index = 0;

for (;;)
{

try
{

screen.println(array[index]);
index++;

}
catch(Exception e)
{

System.out.println(e.toString());
return;

}
}

32. How would you expect the following output statements to display information?

a. System.out.println("Hello World");

b. System.out.println("\tname: ");

c. System.out.println("\tname: " + name); where name is declared as
String name = "Mickey Mouse";

33. Using the declaration for dosWindow given in the text, state the output from the follow-
ing statements.

438 Chapter 7 Exceptions and Streams

a. dosWindow.println("a=" + a + " b=" + b + " c=" + c); where a = 3,
b = 4, and c = 5.

b. dosWindow.print("area covered " + area); screen.flush(); where
area = 635.8658.

c. dosWindow.println("\u0041\u0042\u0043");

34. Detect the errors in the following statements.

a. println("value of beta is ", beta);

b. String alpha = 'X';

c. int beta = new Float(keyboard.readLine()).intValue();

35. Draw hierarchy diagrams for the following classes.

a. Float b. BufferedOutputStream

Programming Problems
36. Write a program to prove that the order in which catch blocks are written is of importance.

37. Write and test separate segments of program code to input a string and throw the
appropriate exception if the string cannot be:

a. converted to a number.

b. converted to an integer.

c. converted to a real number.

Allow the number to be reinput until it is accepted as a number in a valid format.

38. Write an exception class for a time of day not represented in the correct 24-hour format.
Write a program to input various times in the 24-hour format and throw an exception
for those times that are in error.

39. Rewrite the case study from this chapter; however, do not use command-line arguments
for the input of the file name. Instead, allow a user to type the name of the text file to be
processed when the program is running. If the file does not exist, allow the user to either
enter a new file name or to choose to quit the program.

40. A text file contains records with the following fields:

stock number—four digits followed by a modulus-11 check digit

quantity of stock—three digit positive integer

distribution code—two digit positive integer

Programming Problems 439

Create a test data file having records with the stated format. However, you should
include in your file a number of records that do not conform to the format. For example,
a stock number may have the wrong modulus-11 check digit, implying that the number
was incorrectly transcribed; a quantity of stock may not lie within the prescribed limits;
and a distribution code may not be a two-digit number.

Write a program to read the records from the stock file. Filter only those records
that contain no errors into another file. Before writing each record to the new file, trans-
late the two-digit distribution code into a textual description of the area for distribution.
The names of the distribution points are stored in a one-dimensional array. Beware—
this is another source of error since the distribution code may generate an index-out-of-
bounds exception.

Records that are in error should be displayed on the screen stating the nature of the error.
Note: A modulus-11 check digit provides a means for the computer to check that a

number has not had any digits transposed when it has been input to the computer. The
check-digit method ensures a detection of all transcription and transposition errors and
91% of random errors.

The modulus-11 check digit for a stock number is calculated as follows. Using the
code number 9118 as an example, multiply each digit by its associated weight, and cal-
culate the sum of the partial products. The weights are 5, 4, 3, and 2, with the most sig-
nificant digit in the number having the weight of 5 and the least significant digit in the
number having the weight of 2.

(5 � 9) + (4 � 1) + (3 � 1) + (2 � 8) = 68

The sum 68 is then divided by 11 and the remainder 2 is then subtracted from 11; the
result, 9, is the check digit. The stock number, including the check digit as the last digit, is
91189. If the value of the check digit is computed to be 10, this is replaced by the letter X.

To check whether a stock number has been entered into the computer correctly, a
similar calculation is carried out. Each digit is multiplied by a weight, the check digit has
a weight of 1, and the sum of the partial products is calculated.

(5 � 9) + (4 � 1) + (3 � 1) + (2 � 8) + (1 � 9) = 77

The sum 77 is divided by 11 and the remainder is zero. If the remainder was nonzero,
then a transcription error would have been made when entering the number into the
computer.

41. Use an editor to create a file booze.txt that contains the details of items of stock in a
bar. Each line in the file contains the following data: stock quantity, unit price, and
description. For example, a line of text might contain: 3 30.00 Brandy, which represents
3 bottles of Brandy at $30.00 per bottle.

Write a program to read each line from the text file booze.txt and create a report
stock.txt similar in layout and content to that illustrated in Figure 7.10, where the
value of the stock is the product of the respective quantity and price.

440 Chapter 7 Exceptions and Streams

42. A text file viewers.txt contains the following three items per line:

category code of program

estimated size of viewing audience (millions)

name of television program

The category of program is coded with a single character as follows.

D—drama

L—light entertainment

M—music

S—science fiction

A typical record from the file might contain the following data:

D 5.25 NYPD Blue

The data indicate that 5.25 million viewers watched the television program NYPD Blue
and that the show is a drama.

Use an editor to create the text file with programs of your own choice so that the
contents of your file are ordered on the category code as the key. Group all the drama
programs together, all the light-entertainment programs together, and so on.

Write a computer program to input a category code and generate output similar to
that shown in Figure 7.11. This output lists the names of all the programs in the chosen
category, the audience viewing figures, and the total number of viewers who watched
programs in that category.

Figure 7.10 Stock report

Programming Problems 441

Figure 7.11 Audience viewing figures

This page intentionally left blank

C H A P T E R 8
An Introduction to
the java.awt
Package
Within this chapter you will be introduced to many of the Java
components for constructing graphical user interfaces (GUIs). You are
already familiar with the use of some of these components through
the audio-visual interface. With the information in this chapter you will
be able to develop your own GUIs.

A GUI is an interface between a user and a computer that makes use of input
devices other than the keyboard, and presentation techniques other than
alphanumeric characters. Typical GUIs involve the use of windows, menus, and
pointing devices. The windows can contain control objects such as slider bars,
radio buttons, check boxes, and pick lists, as well as textual or graphical infor-
mation. The objects forming the interface have the ability to be resized, moved
around the display, shrunk down to an icon, or given different colors.

Throughout the chapter you are required to modify the classes and example
programs to gain a better understanding of how the awt components are used.

By the end of this chapter you should have an understanding of the following
topics.

■ The hierarchy of components found in the java.awt package known as the
Abstract Windowing Toolkit (AWT).

■ The creation of a container class.

443

■ Adding awt components such as buttons, labels, text fields, check boxes,
radio buttons, and lists to a container.

■ Handling events described in the java.awt.event package.

■ The use of two layout-manager classes for positioning components in a
container.

■ The creation of reusable GUI components from awt components, including
dialog boxes, text areas, and scrollbars.

8.1 Creating a Container

In this section you will see how to create a container in the form of a window
that will appear on the screen; it is into this window that we will add the various
awt objects. Figure 8.1 illustrates some of the classes from the AWT found in
the package java.awt used to build GUIs.

In Figure 8.1 the Component class has been shaded and expanded to indi-
cate that it is of special significance in the construction of a graphical user inter-
face. Subclasses of the Component class include a Container class, which itself
has subclasses that include Window (not to be confused with the avi Window),
Frame, and Dialog classes. Both the Component and Container classes con-
tain a large number of methods that are inherited by their subclasses.

In creating a graphical user interface, we need to create a container object
into which we will place other objects. The Container class is defined as an
abstract class, and therefore it cannot be instantiated directly. However, any of
the subclasses of Container can be instantiated. To begin, we will concentrate
on creating our own container class, called MyWindow, which is a subclass of
Frame. This may be coded as:

public class MyWindow extends Frame

The Frame class represents an optionally resizable top-level application window
with a title bar and contains two constructors.

public Frame();
public Frame(String title);

The first constructor is the default constructor that takes no arguments. The sec-
ond constructor takes a string argument that represents the text stored in the title
bar. In creating the constructor for our MyWindow container class we will code:

public MyWindow(int width, int height, int x, int y)
{

super("My Window");
.
.

444 Chapter 8 An Introduction to the java.awt Package

8.1 Creating a Container 445

Object

CheckboxGroup

Color

Component

Graphics

FlowLayout

GridLayout

Component

CheckboxGroup

Checkbox

Button

Container

Window

Frame

Dialog

Label

List

TextComponent

TextArea

TextField

Figure 8.1 A selection of classes in the AWT package for building interfaces

446 Chapter 8 An Introduction to the java.awt Package

The origin of coordinates is taken to be the upper left-hand corner of the screen. You may
think of the x-axis as the top edge of the screen and the y-axis as the left-hand edge of the

screen, where the positive x-axis is to the right of the origin and the positive y-axis is below the
origin.

1i

Remember the reserved word super invokes the constructor of the superclass.
In this case this constructor will be Frame(String title). The text that will
appear in the title bar of our container window will be My Window.

The dimensions of the container are passed as the parameters width and
height. We need to use a method inherited by Frame from the Component
class—setSize—to set the dimensions of the MyWindow container. If you
inspect the Java documentation, you will notice that setSize can take either a
single argument of type Dimension or two arguments specifying the width and
height of type integer. We will choose to use the second option. Hence, the
coding to set the size of the window container is:

setSize(width,height);

The window container also has other attributes besides size; it has the color of
the foreground and the color of the background. Once again, the Frame class
has inherited the methods setForeground and setBackground from the
Component class; these methods will be used to set the color attributes of the
window container MyWindow. Both methods take an argument that represents
the color of the foreground and the color of the background. Color is specified
as a public constant from the Color class that also forms part of the awt pack-
age. The coding to set the foreground and background colors of the MyWindow
class is:

setForeground(Color.black);
setBackground(Color.yellow);

If you inspect the Java documentation for the Color class, you have a choice of
13 different color constants. The colors used for the window container
MyWindow are the authors’ choice.

Java will allow the programmer to specify where to place the window con-
tainer on the screen. The constructor for the class MyWindow has two parameters
x and y that represent the coordinates of the top left-hand corner of the win-
dow. The method setLocation, inherited from the Component class, fixes the
position of the top left-hand corner of the window container with respect to the
screen of the monitor. The statement is coded as:

setLocation(x,y);

8.1 Creating a Container 447

Although this position is fixed initially, the user can drag the window con-
tainer anywhere on the screen by pressing the left mouse button over the win-
dow bar and moving the mouse until you release the button.

Although the constructor builds a window container, it does not display the
container on the screen of the monitor. The display must be done using the
show method inherited by Frame from the Window class. The statement is
coded as:

this.show();

where the keyword this refers to the MyWindow object. It is good practice to
create an instance method showWindow to display the container on the screen
rather than code the show method in the constructor. The reasons for this may
not be obvious for a container; however, as you will see towards the end of the
chapter, it is important for reusable components that appear in a container.

If we put all these pieces of code together, the first attempt at coding the
MyWindow class is written as follows. Note that class Example_1 is included to
test the methods of the new container class.

// program to create a window container

import java.awt.*;

class MyNewWindow extends Frame
{

// constructor
public MyNewWindow(int width, int height, int x, int y)
{

// call Frame's constructor
super("My Window");

// set colors of window
setBackground(Color.yellow);
setForeground(Color.black);

// set dimensions and position of window on screen
setSize(width, height);
setLocation(x,y); }

// instance method to display window on screen
public void showWindow()
{

this.show();
}

}

448 Chapter 8 An Introduction to the java.awt Package

Figure 8.2 Various options for closing a window

public class Example_1
{

public static void main(String[] args)
{

MyNewWindow window = new MyNewWindow(300,100,200,200);
window.showWindow();

}
}

When you attempt to execute Program Example_1, you soon find that you run
into trouble! The window container appears correctly on the screen of the moni-
tor, but any attempt to close the window is in vain. You can keep pressing the
close window icon marked X, or click-on X Close in the drop-down menu, or
press the Alt+F4 keys together, as depicted by Figure 8.2; however, the window
container will not close. In the end you have to resort to clicking on the
MSDOS/terminal window so that you can type the Ctrl+C keys together to
abandon the running program.

8.2 Handling an Event

Let us tackle the problem of trying to close the window container. All the time
you were trying to close the window, by either moving the mouse pointer over
the close icon X and pressing the window close button, or by moving the mouse
pointer over the X Close window menu option and selecting this option by
clicking on the mouse button, or by pressing Alt+F4 keys, you were generating
events that the computer program failed to recognize. The events you were gen-
erating were a result of actions taking place such as pressing a mouse button or
pressing a key. What was missing from the program was the ability to detect the
events and act upon them.

The event-handling model in versions of Java later than 1.0 is based upon
the concept of an event listener.

An event occurs when an awt component receives some message from the
mouse or keyboard. A listener can be used to respond to these events. Graphical

8.2 Handling an Event 449

user interfaces are event-driven because they respond to events on their compo-
nents such as a button being pressed.

A listener is an object that responds to an event taking place in an awt
graphical user interface. Listeners respond to events such as window-close but-
tons being pressed and mouse button clicks.

If you want to listen for a particular type of event within a class you have
written, the class must implement the correct listener interface for the type of
event you want to handle. For example, when a window-close button is pressed,
it generates a WindowEvent object. A component such as MyWindow must listen
for such events by implementing the WindowListener interface.

The WindowListener is an interface that contains a set of abstract methods
that must be implemented by any class that uses a window listener. The abstract
methods for the class WindowListener are as follows:

public abstract void windowClosed(WindowEvent event);
public abstract void windowDeiconified(WindowEvent event);
public abstract void windowIconified(WindowEvent event);
public abstract void windowActivated(WindowEvent event);
public abstract void windowDeactivated(WindowEvent event);
public abstract void windowOpened(WindowEvent event);
public abstract void windowClosing(WindowEvent event);

You may wonder about the inclusion of so many WindowListener methods when
we only require to implement the method windowClosing in this example. There
is a way to implement the MyWindow class without having to explicitly handle all of
the methods. The java.awt.event package contains adapter classes for all event-
listener interfaces that have at least two methods. The WindowAdapter class
implements all the WindowListener methods by including a set of do-nothing
methods. By creating your own class, say, CloseMyWindow that extends the
WindowAdapter class, you can override only those methods that are of use to you
in your program.

Furthermore, if this class is implemented as an inner class, then it has access
to all the variables of the outer class. An object of an inner class
CloseMyWindow can refer to an object of an outer class MyWindow to which it is
associated by the syntax MyWindow.this. The coding of the CloseMyWindow
class follows.

private class CloseMyWindow extends WindowAdapter
{

// overridden method of superclass
public void windowClosing(WindowEvent event)
{

MyWindow.this.dispose();
System.exit(0);

}
}

450 Chapter 8 An Introduction to the java.awt Package

The implementation of the windowClosing method determines how the event
will be processed. In this method we need to return any system resources being
used by the window. This is accomplished by invoking the object’s dispose
method—in this case, dispose is inherited from Window. It is always a good
idea to call dispose when a window is no longer needed in order to free its
windowing system resources. Finally, we must also call the System.exit
method; it will terminate the currently executing program. We pass it the exit
value 0, which indicates normal termination.

We now need to create a CloseMyWindow object and add this as a window
listener to the MyWindow class by calling the addWindowListener method.
Remember to import the java.awt.event package to allow us to use events.

The original code for the MyWindow class has been modified to include an
event listener. Class Example_2 is included to test the creation of the container
MyWindow.

// program to create a window container

import java.awt.*;
import java.awt.event.*;

class MyWindow extends Frame
{

// constructor
public MyWindow(int width, int height, int x, int y)
{

// call Frame's constructor
super("My Window");

// set colors of window
setBackground(Color.yellow);
setForeground(Color.black);

// set dimensions and position of window on screen
setSize(width, height);
setLocation(x,y);

// add listener to detect window being closed
addWindowListener(new CloseMyWindow());

}
// instance method to display window on screen
public void showWindow()
{

this.show();
}

// subclass of WindowAdapter

8.3 Adding a Button to the Container 451

private class CloseMyWindow extends WindowAdapter
{

// overridden method of superclass
public void windowClosing(WindowEvent event)
{

MyWindow.this.dispose();
System.exit(0);

}
}

}

public class Example_2
{

public static void main(String[] args)
{

MyWindow window = new MyWindow(300,100,200,200);
window.showWindow();

}
}

8.3 Adding a Button to the Container

Having successfully created a container class MyWindow, it is now possible to
add a push button to the container. Figure 8.3 indicates the appearance of this
component.

This new component is created from the awt Button class. The default con-
structor Button() creates a button with no label, whereas the constructor
Button(String label) creates a button with the string argument as the label.

Modify the classes MyWindow and Example_2 as follows.

(1) Change the background color of the window to red.

(2) Change the dimensions of the window to 100 � 400, and change the posi-
tion of the window on the screen to (300,50).

(3) When your program is running, press the Maximize button on the title bar of
MyWindow—this should fill the screen with a red window.

(4) Continue by pressing the Restore button on the title bar of MyWindow—this
should restore the window to its original size.

(5) Finally, press the Minimize button on the title bar of MyWindow—this should
shrink the window to an icon. Mouse-click on the icon to restore MyWindow to
its original size; then close MyWindow.

NOW DO THIS

452 Chapter 8 An Introduction to the java.awt Package

Figure 8.3 Adding a button to a window container

Notice a recurring theme in the use of components. All awt components inherit
methods from the abstract Component class—therefore, setBackground and
setForeground are also used by the Button object in the following code.

// create a button object
Button pushButton = new Button("press me");

// set colors of button
pushButton.setBackground(Color.cyan);
pushButton.setForeground(Color.black);

Before the button is added to the container we need to establish the size of the
button and its placement in the container. There is no reason why the methods
setSize and setLocation, used for the window container, should not also be
used for the button. However, for the moment we will take a simpler approach
by using a layout manager, and then we will return to using the methods
setSize and setLocation later in the chapter.

A layout manager is an interface (java.awt.LayoutManager) that defines
the methods necessary for a class to be able to arrange component objects
within a container object. There are five predefined layout classes that imple-
ment the interface LayoutManager.

Each of these describes a different way that components are physically laid
out within a container. Of the five layout classes illustrated in Figure 8.4, we will
examine the FlowLayout class now and the GridLayout class in the next sec-
tion. Once you understand what a layout manager does, you should be able to
study the Java documentation relating to the remaining three layout classes.

When using the FlowLayout class, components are added to the container
one after another in rows, and when a row is full, the next component is added
to the next row.

The FlowLayout class has three constructors.

public FlowLayout();
public FlowLayout(int align);
public FlowLayout(int align, int hGap, int vGap);

8.3 Adding a Button to the Container 453

<<interface>>
LayoutManager

BorderLayout

CardLayout

FlowLayout

GridBaglayout

GridLayout

Figure 8.4 Five implementations of the layout manager

The argument align may be any one of the three class constants LEFT, RIGHT,
or CENTER (default). It specifies whether the alignment of the components will
be left justified, right justified, or centralized with respect to the edge of the
container.

The arguments hGap and vGap specify the number of horizontal and vertical
pixels between components.

The code used to set the flow layout manager for the button in the
MyWindowWithButton class is:

setLayout(new FlowLayout());

The button is added to the MyWindowWithButton container, using the add
method inherited from the Container class.

// add push button to the container
add(pushButton);

A button has a different event listener than a window. Figure 8.5 illustrates the
event and listener methods associated with each component. For example, a button
when pressed generates an ActionEvent object. ActionListener is an interface

454 Chapter 8 An Introduction to the java.awt Package

that contains a single method actionPerformed, which is automatically invoked
when a button is pressed. Because ActionListener is an interface, the method
actionPerformed must be implemented by the programmer. However, the
ActionListener interface contains only one method, so the method can be
implemented directly in the MyWindowWithButton class. The action listener is
added to the MyWindowWithButton class with the following code.

pushButton.addActionListener(this);

The source of the event may be established by invoking the method
getActionCommand() from the ActionEvent class. This way it is possible to
determine which of several buttons have been pressed. Note, both classes
ActionEvent and ActionListener can be found in the package
java.awt.event.

To detect the event of a button being pushed we must do the following:

■ Import the java.awt.event package.

■ Add an action listener to the class MyWindowWithButton.

■ Since ActionListener is an interface, we must implement its method by
the appropriate class (in this example, the MyWindowWithButton class).

■ Process the event. The implementation of the actionPerformed method
determines how the event will be processed.

We will design the MyWindowWithButton class so that when you press the but-
ton, the computer generates the sound associated with Unicode \u0007 (the
BELL character) and displays the message button pressed in the
MSDOS/terminal window.

The complete code for the MyWindowWithButton class follows together
with class Example_3, which is needed to test the GUI.

// program to create a window container and add a push button to the
// container

import java.awt.*;
import java.awt.event.*;

class MyWindowWithButton extends Frame implements ActionListener
{

// constructor
public MyWindowWithButton(int width, int height, int x, int y)
{

8.3 Adding a Button to the Container 455

// call Frame's constructor
super("My Window with button");

// set colors of window
setBackground(Color.yellow);
setForeground(Color.black);

// set dimensions and position of window on screen
setSize(width, height);
setLocation(x,y);

// add listener to detect window being closed
addWindowListener(new CloseMyWindow());

// use flow layout manager
setLayout(new FlowLayout());

// create a button object
Button pushButton = new Button("press me");

// set colors of button
pushButton.setBackground(Color.cyan);
pushButton.setForeground(Color.black);

// add push button to the container
add(pushButton);

// add listener to detect button being pushed
pushButton.addActionListener(this);

}

// instance method to display window on screen
public void showWindow()
{

this.show();
}

// subclass of WindowAdapter
private class CloseMyWindow extends WindowAdapter
{

// overridden method of superclass
public void windowClosing(WindowEvent event)
{

MyWindowWithButton.this.dispose();
System.exit(0);

}
}

456 Chapter 8 An Introduction to the java.awt Package

Modify the class MyWindowWithButton as follows.

(1) Create two buttons called STOP and GO. The background color of the STOP
button is red, and the background color of the GO button is green. You don’t
need to code an entry for the foreground colors of the buttons; they will be
taken as black by default.

(2) Add these buttons to the container and remember to add action listeners for
each button. When the STOP button is pressed, print the message Red is
for Danger, and when the GO button is pressed print the message Green
is for Eco-friendly. Both messages are displayed in the MSDOS/termi-
nal window.

NOW DO THIS

// implementation of Action Listener method
public void actionPerformed(ActionEvent event)
{

final char BELL = '\u0007';

if (event.getActionCommand().equals("press me"))
{

System.out.println(BELL+"button pressed");
}

}
}

public class Example_3
{

public static void main(String[] args)
{

MyWindowWithButton window = new
MyWindowWithButton(300,100,200,200);
window.showWindow();

}
}

Figure 8.5 lists a number of components from the Abstract Windowing
Toolkit. Note that although both a key (from the keyboard) and a mouse are
external to the GUI and are not components within the AWT, they are still
capable of generating events that must be handled within your program.

8.4 Adding Labels, Fonts, and Text Fields to a Container 457

Component Events Generated Listener Interface Listener Methods
Button ActionEvent ActionListener actionPerformed
Checkbox ItemEvent ItemListener itemStateChanged
CheckboxMenuItem ItemEvent ItemListener itemStateChanged
Choice ItemEvent ItemListener itemStateChanged
Component ComponentEvent ComponentListener componentHidden
. . . componentMoved
. . . componentResized
. . . componentShown
. FocusEvent FocusListener focusGained
. . . focusLost
Container ContainerEvent ContainerListener componentAdded
. . . componentRemoved
[key] KeyEvent KeyListener keyPressed
. . . keyReleased
. . . keyTyped
List ActionEvent ActionListener actionPerformed
. ItemEvent ItemListener itemStateChanged
MenuItem ActionEvent ActionListener actionPerformed
[mouse] MouseEvent MouseListener mouseClicked
. . . mouseEntered
. . . mouseExited
. . . mousePressed
. . . mouseReleased
. . MouseMotionListener mouseDragged
. . . mouseMoved
Scrollbar AdjustmentEvent AdjustmentListener adjustmentValueChanged
TextComponent TextEvent TextListener textValueChanged
TextField ActionEvent ActionListener actionPerformed
Window WindowEvent WindowListener windowActivated

windowClosed
windowClosing
windowDeactivated
windowDeiconified
windowIconified
windowOpened

Figure 8.5 Components, events, and listener methods

8.4 Adding Labels, Fonts, and Text Fields to
a Container

Labels
Labels are text strings that may be used to label other components. Figure 8.6
illustrates two labels appearing in a window container.

An object from the Label class is instantiated using one of the following
constructors.

public Label();
public Label(String label);
public Label(String label, int alignment);

458 Chapter 8 An Introduction to the java.awt Package

Figure 8.6 Labels written to a window container

where alignment is one of the class constants CENTER, LEFT, and RIGHT. The
code used to create the labels shown in Figure 8.6 follows.

Label name = new Label("Name");
Label address = new Label("Address");

Fonts
Before the label is displayed in the window container, it is often desirable, but
not necessary, to set the font for writing the label. The constructor for the Font
class is:

public Font(String name, int style, int size);

where name is either "Serif", "SansSerif", "Monospaced", "Dialog", or
"DialogInput"; style is one of the class constants BOLD, ITALIC, or PLAIN, and
size is the point size of the font. Note that a one-inch-high character has a point
size of 72.

In this example we will set the font name to SansSerif, style to ITALIC,
and the font size to 14 points.

Font label = new Font("SansSerif",Font.ITALIC,14);

Before we add the labels to window container, it is necessary to decide where on
the container the labels will be written. At this point we will consider the second
of the layout managers—GridLayout.

With the GridLayout manager, the components are placed into the respec-
tive cells of a grid. When the cells of the first row are filled, the components
continue to be placed in the next row, and so on, until eventually there are no
further components to place on the grid.

The constructor for the GridLayout class is:

public GridLayout(int rows, int columns);
public GridLayout(int rows, int columns, int hGap, int vGap)

8.4 Adding Labels, Fonts, and Text Fields to a Container 459

where the parameters rows and columns specify the size of the grid and hGap
and vGap specify the distance in pixels between the components.

If we want each label to be placed in a separate row, then we can code the
layout manager using two rows and one column as:

setLayout(new GridLayout(2,1));

The labels are added to the window container using the following code:

add(name);
add(address);

The following classes, MyWindowWithLabels and Example_4, are used to
generate the graphical interface shown in Figure 8.6.

// program to create a window container and add labels to the container

import java.awt.*;
import java.awt.event.*;

class MyWindowWithLabels extends Frame
{

// constructor
public MyWindowWithLabels(int width, int height, int x, int y)
{

// call Frame's constructor
super("My Window with labels");

// set colors of window
setBackground(Color.yellow);
setForeground(Color.black);

// set dimensions and position of window on screen
setSize(width, height);
setLocation(x,y);

// add listener to detect window being closed
addWindowListener(new CloseMyWindow());

// use grid layout manager
setLayout(new GridLayout(2,1));

// create font for labels
Font label = new Font("SansSerif",Font.ITALIC,14);

460 Chapter 8 An Introduction to the java.awt Package

Modify classes MyWindowWithLabels and Example_4 as follows.

(1) Add extra labels to the window container for a telephone number and date of
birth.

(2) Modify the grid layout to cater for 4 rows and 1 column.

(3) Experiment with the use of different fonts for the labels.

NOW DO THIS

// create labels
Label name = new Label("Name");
Label address = new Label("Address");

// set font of labels
name.setFont(label);
address.setFont(label);

// add labels to container
add(name);
add(address);

}

// instance method to display window on screen
public void showWindow()
{

this.show();
}

// subclass of WindowAdapter
private class CloseMyWindow extends WindowAdapter
{

// overridden method of superclass
public void windowClosing(WindowEvent event)
{

MyWindowWithLabels.this.dispose();
System.exit(0);

}
}

}

public class Example_4
{

public static void main(String[] args)
{

MyWindowWithLabels window = new
MyWindowWithLabels(300,100,200,200);
window.showWindow();

}
}

8.4 Adding Labels, Fonts, and Text Fields to a Container 461

Figure 8.7 Labels and text fields in a window container

Text Fields
A TextField allows you to either input or output textual information. Figure
8.7 illustrates how labels may be used in conjunction with text fields to describe
what the text field contains. Regardless of the length of a text field, Java will
allow you to enter text that is physically longer than the text field. Although part
of the text becomes obscured, the complete line of text can still be retrieved.

An object from the TextField class can be instantiated using the following
constructor.

public TextField();

The following constructors were used to create the text fields illustrated in
Figure 8.7.

TextField nameField = new TextField();
TextField addressField = new TextField();

Assume that text has been input into the appropriate text field. Pressing the
return key is an action that generates an event. Provided an action listener is
associated with the text field, the event can be handled by implementing the
actionPerformed method of the ActionListener interface. You, of course,
need to add an action listener for each text field object as:

nameField.addActionListener(this);
addressField.addActionListener(this);

The ActionListener interface contains only one method to be imple-
mented—actionPerformed. Notice in this implementation that when the
event of pressing the Return key is detected, the information that had been
typed into the text field is retrieved by the getText method inherited by the
class TextField from the TextComponent class.

462 Chapter 8 An Introduction to the java.awt Package

// implementation of action listener class
public void actionPerformed(ActionEvent event)
{

System.out.println("Name: "+nameField.getText());
System.out.println("Address: "+addressField.getText());

}

The classes MyWindowWithTextFields and Example_5 together form the
components illustrated in Figure 8.7. When Program Example_5 is executed,
whatever is typed in the text field is displayed in the MSDOS/terminal window.

// program to create a window container and add labels and text fields to
// the container

import java.awt.*;
import java.awt.event.*;

class MyWindowWithTextFields extends Frame implements ActionListener
{

private TextField nameField;
private TextField addressField;
// constructor
public MyWindowWithTextFields(int width, int height, int x, int y)
{

// call Frame's constructor
super("My Window with text fields");

// set colors of window
setBackground(Color.yellow);
setForeground(Color.black);

// set dimensions and position of window on screen
setSize(width, height);
setLocation(x,y);

// add listener to detect window being closed
addWindowListener(new CloseMyWindow());

// create fonts for labels and text fields
Font label = new Font("SansSerif",Font.ITALIC,14);
Font text = new Font("Monospaced",Font.PLAIN,14);

// use grid layout manager
setLayout(new GridLayout(5,2));

// create labels

8.4 Adding Labels, Fonts, and Text Fields to a Container 463

Label name = new Label("Name");
Label address = new Label("Address");

// set font of labels
name.setFont(label); address.setFont(label);

// create text fields
nameField = new TextField();
addressField = new TextField();

// set font of text fields
nameField.setFont(text); addressField.setFont(text);

// add labels and text fields to container
add(name); add(nameField);
add(address); add(addressField);

// add listeners to detect input in both fields
nameField.addActionListener(this);
addressField.addActionListener(this);

}
// instance method to display window on screen
public void showWindow()
{

this.show();
}
// subclass of WindowAdapter
private class CloseMyWindow extends WindowAdapter
{

// overridden method of superclass
public void windowClosing(WindowEvent event)
{

MyWindowWithTextFields.this.dispose();
System.exit(0);

}
}
// implementation of action listener class
public void actionPerformed(ActionEvent event)
{

System.out.println("Name: "+nameField.getText());
System.out.println("Address: "+addressField.getText());

}
}

public class Example_5
{

464 Chapter 8 An Introduction to the java.awt Package

Modify classes MyWindowWithTextFields and Example_5
as follows.

(1) Add labels and text fields for a telephone number and date of birth; then dis-
play the contents of what is input into each field.

(2) Modify the grid layout to cater for 9 rows and 1 column.

(3) Experiment with typing text that is longer than the length of the text field.

(4) Experiment with changing the foreground and background colors of the fields.

NOW DO THIS

(1) Devise a new class MyWindowWithNewTextFields to display within five dif-
ferent text fields data about the name of a country, the size of its population,
the name of the capital of the country, and the size of the population living
within the capital. Calculate the percentage of the population living in the
capital and display this figure in the fifth text field.

(2) The data for this problem should be input at the command line of the
MSDOS/terminal window, and the user should not be allowed to edit any of
the text fields.

NOW DO THIS

public static void main(String[] args)
{

MyWindowWithTextFields window = new
MyWindowWithTextFields(300,150,200,200);
window.showWindow();

}
}

To write text into a text field from within a program, use the method setText
inherited by TextField from the TextComponent class. The signature of the
method is:

public synchronized void setText(String text);

The method setEditable, also inherited by TextField from the
TextComponent class, specifies whether the text in a text field can be edited.
The signature of this method is:

public synchronized void setEditable(boolean value);

8.5 Adding Check Boxes, Radio Buttons, and Lists to a Container 465

Figure 8.8 Adding check boxes to a window container

8.5 Adding Check Boxes, Radio Buttons, and
Lists to a Container

Check Boxes
Check boxes are components that have two states; on or off (true or false). The
check boxes illustrated in Figure 8.8 may be selected nonexclusively, implying
that any check box may be selected.

An object from the awt Checkbox class is instantiated using one of the fol-
lowing constructors.

public Checkbox();
public Checkbox(String label);
public Checkbox(String label, boolean state);

The label parameter specifies a text literal for a check box. The state parame-
ter indicates whether the checkbox should be preselected (true) or not (false).

There are five constructors in total. The remaining two constructors will be
considered later under the discussion of radio buttons.

The following skeletal code shows how two of the check boxes illustrated in
Figure 8.8 were created.

// select grid layout manager
setLayout(new GridLayout(5,1));

// create check boxes
Checkbox eggs = new Checkbox("Eggs");
Checkbox bacon = new Checkbox("Bacon");
.
.

// add check boxes to window container

466 Chapter 8 An Introduction to the java.awt Package

add(eggs);
add(bacon);
.
.

// add listeners for each check box
eggs.addItemListener(this);
bacon.addItemListener(this);
.
.

A mouse is used to point at and click-select the appropriate boxes. Figure 8.8
illustrates that three breakfast foods—Eggs, Bacon, and Beans—have been cho-
sen from the selection. The events of a check box are detected by the method
itemStateChanged defined in the interface ItemListener. The class
ItemEvent contains class constants that specify whether an item is DESEL-
ECTED or SELECTED. There are two methods, getStateChange and getItem,
to determine which items have been selected. The itemStateChanged method
would be implemented as follows, to detect and print only those items that have
been selected.

// implementation of Item Listener method
public void itemStateChanged(ItemEvent event)
{

if (event.getStateChange() == ItemEvent.SELECTED)
{

String item = (String)event.getItem();
System.out.println(item);

}
}

The following classes, MyWindowWithCheckBoxes and Example_6, are used to
generate the GUI shown in Figure 8.8.

// program to create a window and add check boxes to it

import java.awt.*;
import java.awt.event.*;

class MyWindowWithCheckBoxes extends Frame implements ItemListener
{

// constructor
public MyWindowWithCheckBoxes(int width, int height, int x, int y)
{

// call Frame's constructor
super("My Window with check boxes");

8.5 Adding Check Boxes, Radio Buttons, and Lists to a Container 467

// set colors of window
setBackground(Color.yellow);
setForeground(Color.black);

// set dimensions and position of window on screen
setSize(width, height);
setLocation(x,y);

// add listener to detect window being closed
addWindowListener(new CloseMyWindow());

// select grid layout manager
setLayout(new GridLayout(5,1));

// create check boxes
Checkbox eggs = new Checkbox("Eggs");
Checkbox bacon = new Checkbox("Bacon");
Checkbox sausages = new Checkbox("Sausages");
Checkbox beans = new Checkbox("Beans");

// add check boxes to window container
add(eggs);
add(bacon);
add(sausages);
add(beans);

// add listeners for each check box
eggs.addItemListener(this);
bacon.addItemListener(this);
sausages.addItemListener(this);
beans.addItemListener(this); }

// instance method to display window on screen
public void showWindow()
{

this.show();
}
// subclass of WindowAdapter
private class CloseMyWindow extends WindowAdapter
{

// overridden method of superclass
public void windowClosing(WindowEvent event)
{

MyWindowWithCheckBoxes.this.dispose();
System.exit(0);

}

468 Chapter 8 An Introduction to the java.awt Package

Modify classes MyWindowWithCheckBoxes and Example_6
as follows.

(1) Create check boxes for the names of your favorite music stars.

(2) In your code, preselect one of the boxes and change the font of the labels for
the boxes.

(3) Experiment with a different number of rows and columns in the GridLayout
object and note the changes to the layout of the check boxes.

NOW DO THIS

}
// implementation of Item Listener method
public void itemStateChanged(ItemEvent event)
{

if (event.getStateChange() == ItemEvent.SELECTED)
{

String item = (String)event.getItem();
System.out.println(item);

}
}

}

public class Example_6
{

public static void main(String[] args)
{

MyWindowWithCheckBoxes window = new
MyWindowWithCheckBoxes(300,150,200,200);
window.showWindow();

}
}

Radio Buttons
Radio buttons, unlike check boxes, allow only one button to be chosen from a
series of buttons. Switching any one button on will switch off the remaining
buttons. Hence, only one button can be set on; it will exclude all the remaining
buttons from being set on. Figure 8.9 illustrates a group of radio buttons added
to a window container.

To create a set of radio buttons, first instantiate an object from the
CheckboxGroup class. A CheckboxGroup object enforces mutual exclusion
(also known as radio-button behavior) among any number of Checkbox but-

8.5 Adding Check Boxes, Radio Buttons, and Lists to a Container 469

Figure 8.9 Adding radio buttons to a window container

tons. There is only one constructor for the CheckboxGroup class, and its signa-
ture is public CheckboxGroup();.

The Checkbox class has two more constructors in addition to the three con-
structors previously described.

public Checkbox(String label, boolean state, CheckboxGroup group);
public Checkbox(String label, CheckboxGroup group, boolean state);

Clearly these two constructors contain an extra parameter to ensure that a check
box is part of a CheckboxGroup and hence will enforce mutual exclusion (radio-
button behavior) within the components of the group. The parameters label
and state serve the same purpose as previously described for a check box. The
following skeletal code shows how two of the radio buttons illustrated in Figure
8.9 were created.

// create check box group
CheckboxGroup cbg = new CheckboxGroup();

// create individual check boxes as part of check box group
Checkbox sciFi = new Checkbox("SCI-FI CHANNEL",false,cbg);
Checkbox ukGold = new Checkbox("UK GOLD",false,cbg);
.
.

// add check boxes to window container
add(sciFi);
add(ukGold);
.
.

470 Chapter 8 An Introduction to the java.awt Package

// add listeners for each check box
sciFi.addItemListener(this);
ukGold.addItemListener(this);
.
.

Since we are dealing with Checkbox components, the method of detecting and
dealing with events is similar to the previous example. The following code
detects and prints only those items that are selected.

// implementation of Item Listener method
public void itemStateChanged(ItemEvent event)
{

if (event.getStateChange() == ItemEvent.SELECTED)
{

String item = (String)event.getItem();
System.out.println(item);

}
}

The following program demonstrates how all of the radio buttons illustrated in
Figure 8.9 were created and handled.

// program to create a window and add radio buttons to the container

import java.awt.*;
import java.awt.event.*;

class MyWindowWithRadioButtons extends Frame implements ItemListener
{

// constructor
public MyWindowWithRadioButtons(int width, int height, int x, int y)
{

// call Frame's constructor
super("My Window with radio buttons");

// set colors of window
setBackground(Color.yellow);
setForeground(Color.black);

// set dimensions and position of window on screen
setSize(width, height);
setLocation(x,y);

8.5 Adding Check Boxes, Radio Buttons, and Lists to a Container 471

// add listener to detect window being closed
addWindowListener(new CloseMyWindow());

// select grid layout manager
setLayout(new GridLayout(6,1));

// create check box group
CheckboxGroup cbg = new CheckboxGroup();

// create individual check boxes as part of check box group
Checkbox sciFi = new Checkbox("SCI-FI CHANNEL",false,cbg);
Checkbox ukGold = new Checkbox("UK GOLD",false,cbg);
Checkbox skyMovie = new Checkbox("SKY MOVIEMAX",false,cbg);
Checkbox natGeo = new Checkbox("NATIONAL GEOGRAPHIC",

false,cbg);

// add check boxes to window container
add(sciFi);
add(ukGold);
add(skyMovie);
add(natGeo);

// add listeners for each check box
sciFi.addItemListener(this);
ukGold.addItemListener(this);
skyMovie.addItemListener(this);
natGeo.addItemListener(this);

}
// instance method to display window on screen
public void showWindow()
{

this.show();
}
// subclass of WindowAdapter
private class CloseMyWindow extends WindowAdapter
{

// overridden method of superclass
public void windowClosing(WindowEvent event)
{

MyWindowWithRadioButtons.this.dispose();
System.exit(0);

}
}
// implementation of Item Listener method

472 Chapter 8 An Introduction to the java.awt Package

Modify classes MyWindowWithRadioButtons and Example_7
as follows.

(1) Create radio buttons for all the colors defined by the Color class in the awt
package.

(2) Change the number of rows in the GridLayout manager and the height of
the window container to accommodate all the colors.

NOW DO THIS

public void itemStateChanged(ItemEvent event)
{

if (event.getStateChange() == ItemEvent.SELECTED)
{

String item = (String)event.getItem();
System.out.println(item);

}
}

}

public class Example_7
{

public static void main(String[] args)
{

MyWindowWithRadioButtons window = new
MyWindowWithRadioButtons(300,200,200,200);
window.showWindow();

}
}

List
A list is illustrated in Figure 8.10. If the number of items in the list is larger than
the size of the list box, a scrollbar is automatically inserted to allow inspection of
the other items in the list. A list can be defined for the selection of either single
or multiple items from the list.

An awt List component has the following constructors.

public List();
public List(int rows, boolean multipleSelections);

where rows represents the minimum number of visible entries before a vertical
scroll bar is automatically inserted. multipleSelections is set to true if you
want to choose more than one item from the list; otherwise it is set to false.

The following code shows how six items are added to the list to produce the
scrolling list illustrated in Figure 8.10.

8.5 Adding Check Boxes, Radio Buttons, and Lists to a Container 473

Figure 8.10 Adding a list to a window container

// create a list with multiple selection and with 4 items visible
List shopping = new List(4,true);

// add items to the list
shopping.add("lettuce");
shopping.add("cucumber");
shopping.add("tomatoes");
shopping.add("peppers");
shopping.add("coleslaw");
shopping.add("onions");

// add the list to the window container
add(shopping);

You may have noticed from Figure 8.5 that a list may generate two different
types of events. Hence you need to implement an ActionListener and an
ItemListener. You must add a listener for an item being selected and add
another listener for an action being performed.

// listen for item being selected
shopping.addItemListener(this);

// listen for double-click on item
shopping.addActionListener(this);

When you single-click select an item from the menu with a mouse-pointer, a
change of state for that item takes place. This event is handled by the item lis-
tener and by the implemented itemStateChanged method. To identify which
item has been selected, use the instance method getItem() from the class
java.awt.event.ItemEvent. The method getItem() will return the posi-
tion of the item in the list. The first item is located at position 0 (zero), the sec-
ond item is located at position 1, and so on.

// implementation of Item Listener method
public void itemStateChanged(ItemEvent event)

474 Chapter 8 An Introduction to the java.awt Package

{
int position = ((Integer)event.getItem()).intValue();

System.out.println("you selected the item at position "+
position+" in the list");

}

However, when you double-click select an item, the first click is handled by the
item listener and the second click by the action listener. The following code can
be used to determine the name of the item selected from the menu.

// implementation of Action Listener method
public void actionPerformed(ActionEvent event)
{

System.out.println("you double-clicked on "+
event.getActionCommand());

}

The following program demonstrates how the radio buttons illustrated in
Figure 8.10 were created.

// program to create a window and add a list to the container

import java.awt.*;
import java.awt.event.*;

class MyWindowWithList extends Frame implements ActionListener,
ItemListener

{
// constructor
public MyWindowWithList(int width, int height, int x, int y)
{

// call Frame's constructor
super("My Window with list");

// set colors of window
setBackground(Color.yellow);
setForeground(Color.black);

// set dimensions and position of window on screen
setSize(width, height);
setLocation(x,y);

// add listener to detect window being closed
addWindowListener(new CloseMyWindow());

8.5 Adding Check Boxes, Radio Buttons, and Lists to a Container 475

// select grid layout manager
setLayout(new FlowLayout());

// create a list with multiple selection and with 4 items
// visible
List shopping = new List(4,true);

// add items to the list
shopping.add("lettuce");
shopping.add("cucumber");
shopping.add("tomatoes");
shopping.add("peppers");
shopping.add("coleslaw");
shopping.add("onions");

// add the list to the window container
add(shopping);

// listen for item being selected
shopping.addItemListener(this);

// listen for double-click on item
shopping.addActionListener(this);

}
// instance method to display window on screen
public void showWindow()
{

this.show();
}
// subclass of WindowAdapter
private class CloseMyWindow extends WindowAdapter
{

// overridden method of superclass
public void windowClosing(WindowEvent event)
{

MyWindowWithList.this.dispose();
System.exit(0);

}
}
// implementation of Item Listener method
public void itemStateChanged(ItemEvent event)
{

int position = ((Integer)event.getItem()).intValue();

476 Chapter 8 An Introduction to the java.awt Package

Modify classes MyWindowWithList and Example_8 as fol-
lows.

(1) Create a list containing all your favorite foods.

(2) Experiment with changing the background and foreground colors of the list
and the font of the items in the list.

NOW DO THIS

System.out.println("you selected the item at position "+
position+" in the list");

}
// implementation of Action Listener method
public void actionPerformed(ActionEvent event)
{

System.out.println("you double-clicked on "+
event.getActionCommand());

}
}

public class Example_8
{

public static void main(String[] args)
{

MyWindowWithList window = new
MyWindowWithList(200,130,200,200);
window.showWindow();

}
}

8.6 Creating a Reusable Container

The MyWindow... classes were created to allow you to experiment with adding
components to the MyWindow container. In all these examples, the data for the
classes was “hard-coded” into classes. For example, the text fields were prede-
fined with Name and Address, the check boxes with Eggs, Bacon, Sausages, and
Beans, and so on. Because of the hard-coding of the data, the classes cannot be
reused in other examples. This approach somewhat defeats one of the objectives
of object-oriented programming—to create classes that can be reused wherever
possible.

Now that you have had time to use and understand some of the awt compo-
nents, you are able to build new general-purpose components that can be reused
in many applications.

8.6 Creating a Reusable Container 477

Good practice dictates that you should acquire the size of the screen of the monitor and
base all your component measurements as percentages of the screen size. If you use this

technique and then run your application on different sized screens, you will always have the
components of your graphical user interface correctly proportioned.

1i

To begin, we will concentrate on creating our own container class, called
WindowPane, which is a subclass of Frame. This may be coded as:

public class WindowPane extends Frame

In creating the constructor for our WindowPane container class we will code:

public WindowPane()
{

super(" This is a WindowPane ..");
.

Remember the reserved word super invokes the constructor of the superclass. In
this case the constructor is Frame(String title). The text that will appear in
the title bar of our container window will be This is a WindowPane ...

The next stage in building our constructor is to determine the size of the
WindowPane.

To acquire the size of the screen, we need the help of the Toolkit class that is
part of the awt package. A Toolkit is an abstract class that defines method sig-
natures for creating standard GUI components and obtaining information about
them. The Component class defines a getToolkit method that is overridden by
the Window class, and the overridden method is thus inherited by the Frame
class. The getToolkit method will return the Toolkit of the frame. To create
a Toolkit object we code:

Toolkit tools = this.getToolkit();

The keyword this refers to the current WindowPane object. You may wonder
why we did not use the constructor of the Toolkit class, that is, why we didn’t
just code:

Toolkit tools = new Toolkit();

If you inspect the Java documentation for this class, you will see that only a
default constructor is supplied that is useless for our requirements.

478 Chapter 8 An Introduction to the java.awt Package

The Java documentation for the Toolkit class reveals a host of many useful
methods of which the getScreenSize method is just one. The data type
returned by this method is the class Dimension, which is yet another class
within the awt package. The Dimension class has two public instance variables
that describe the width and height of an object. Therefore, to get the width
and height of the screen of a monitor we need the following code:

Dimension size = tools.getScreenSize();
width = size.width;
height = size.height;

Now that we know the size of the screen, we want to set the size of the
WindowPane. Hence, the coding to set the size of the window pane is:

this.setSize(width,height);

The effect of all of this work is that our WindowPane will be set to the size of
the monitor.

The coding to set the foreground and background colors of the WindowPane
class is:

setForeground(Color.blue);
setBackground(Color.black);

We have already seen that Java allows the programmer to specify different
approaches for placing components into a container by using the method
setLayout, inherited by Frame from the Container class. If we want to ignore
any predefined layout, then we code:

setLayout(null);

The window pane is displayed using the instance method showWindowPane
that contains the show method inherited by Frame from the Window class. The
statement is coded as:

this.show();

Two other instance methods, getWidth and getHeight, get the width and
the height of the window pane, respectively, and these methods can also be
included in the WindowPane class.

However, you will need to create a CloseWindowPane object and add this as
a window listener to the window pane by calling the addWindowListener
method. The code is very similar to that discussed at the beginning of the chap-

8.6 Creating a Reusable Container 479

ter for the class MyWindow. The code for the WindowPane class also incorporates
an inner class to handle the window event.

import java.awt.*;
import java.awt.event.*;

public class WindowPane extends Frame
{

// size of window
private static int width;
private static int height;
/**
The WindowPane class enables an object that represents a
container for holding graphical components. The object takes
the dimensions of the screen of the monitor.
*/
public WindowPane()
{

super(" This is a WindowPane ..");

// add window listener
addWindowListener(new CloseWindowPane());

// get size of screen
Toolkit tools = this.getToolkit();
Dimension size = tools.getScreenSize();
width = size.width;
height = size.height;
this.setSize(width,height);

// set foreground color and size of window
setForeground(Color.blue);
setBackground(Color.black);
setLayout(null);

}
/**
Show the window pane on the screen of the monitor
*/
public void showWindowPane()
{

this.setVisible(true);
}
/**
Get the width of the container.
@return The width of the container.
*/

480 Chapter 8 An Introduction to the java.awt Package

public int getWidth()
{

return width;
}
/**
Get the height of the container.
@return The height of the container
*/
public int getHeight()
{

return height;
}
// inner class used to handle event
private class CloseWindowPane extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

WindowPane.this.dispose();
System.exit(0);

}
}

}

8.7 Creating a Reusable WritingPad Component

In creating the WindowPane class we have provided no methods for outputting
text to the screen. This ploy is quite deliberate. Remember WindowPane is a
container—it is not meant for writing on, but is meant for containing other
objects. In order to display text on the screen we need to create a new compo-
nent out of awt components, one that can be placed in the container
WindowPane. This new component is composed from three standard awt com-
ponents—the Dialog class, the Font class, and the TextArea class.

As you can see from Figure 8.1, the Dialog class is a subclass of the Window
class. The class represents a window with a title bar. However, a Dialog window
may be modal so that it blocks user input to all other windows until dismissed. A
Dialog object is an awt container, and awt component objects can be added to it.

The Dialog class has four constructors. The only one that is of interest in
this example has the following signature:

public Dialog(Frame parent, String title, boolean modal);

where parent is the container class for this new window. In other words, you
can create a window appearing on a window. In this context parent will be a
WindowPane object, but equally it could be any container object that has a
Frame as its superclass. The string title is suitable text for the title bar of the
Dialog window, and modal, when set true, will cause all input to other win-

8.7 Creating a Reusable WritingPad Component 481

dows to be blocked until the Dialog window is closed. When modal is set to
false, it is possible to interact with other windows.

The initial coding of the constructor for the WritingPad class contains the
following code.

public WritingPad(Frame parent)
{

super(parent, " This is a WritingPad ..", false);
int screenWidth = parent.getWidth();
int screenHeight = parent.getHeight();
// set location and size of dialog box
int xLocationOfBox = (int)(0.075f * screenWidth);
int yLocationOfBox = (int)(0.1f * screenHeight);
int widthOfBox = (int)(0.4f * screenWidth);
int heightOfBox = (int)(0.7f * screenHeight);
// construct a dialog box
this.setLayout(null);
this.setBackground(Color.lightGray);
this.setForeground(Color.blue);
this.setLocation(xLocationOfBox,yLocationOfBox);
this.setSize(widthOfBox,heightOfBox);
.
.

Notice that, within the constructor, the location of the top left-hand corner of
the Dialog window and the size of the Dialog window have been initialized.
Don’t be put off by the numbers used in the initialization of the coordinates of
the top left-hand corner and by the width and height of the Dialog window.
These numbers are not magic numbers (numeric literals that appear in a pro-
gram without any explanation or declaration as constants); they simply repre-
sent the percentage of the screen width and height of the WindowPane object
on which the Dialog window will appear. For example, the width of the
Dialog window is 40% of the width of the WindowPane, and the height of
the Dialog window is 70% of the height of the WindowPane.

A dialog window is more commonly referred to as a dialog box; hence, the
coding in the constructor refers to widthOfBox and heightOfBox.

As the name suggests, setLocation fixes the position of the top left-hand
corner of the Dialog window, with respect to the WindowPane. Although this
position is fixed initially, it is possible to drag the Dialog window anywhere
within the WindowPane by pressing the left mouse button over the dialog win-
dow bar and moving the mouse until you release the button.

In the coding for drawing the dialog window, the keyword this refers to the
object that invoked the constructor—this is a WritingPad object. Hence, a
WritingPad object has a light gray background, blue foreground, set size and
location, and does not use any of the regimes for placing components into the
Dialog window.

482 Chapter 8 An Introduction to the java.awt Package

The next phase in the construction of the WritingPad constructor is to
specify a font for printing text. In this example we will set the font name to
Serif, style to BOLD, and the font size to 16 points.

Font type = new Font("Serif",Font.BOLD,16);

The final phase in the construction of the WritingPad constructor is to specify
a component that can be placed in the Dialog window and used for writing
text. The name of the component is TextArea, and many of its useful methods
are defined in its superclass TextComponent.

The TextArea class has five constructors; we are interested only in the one
constructor whose signature is:

public TextArea(String text, int rows, int columns, int scrollbars);

where text is the text to be displayed, rows and columns represent the number
of rows and columns of text, and scrollbars is a constant determining the
scrollbars regime. In this example, the text string is set to null, the number of
rows and columns is set at unity, and only a vertical scroll bar is required. The
code to define the text area in the constructor is written as:

TextArea writingArea = new
TextArea("",1,1,TextArea.SCROLLBARS_VERTICAL_ONLY);

writingArea.setLocation(X_TOP_LH_CORNER,Y_TOP_LH_CORNER);
writingArea.setSize((int)(widthOfBox-SCREEN_TRIM_SIZE/2),

heightOfBox-HEIGHT_OF_BAR);

writingArea.setBackground(Color.white);
writingArea.setForeground(Color.blue);
writingArea.setEditable(false);

this.add(writingArea);

Notice that since TextArea is a subclass of Component, it may also use the
inherited methods setLocation, setSize, setBackground, and setFore-
ground. The method setEditable is inherited from its immediate superclass
TextComponent and will allow the text to be edited when the parameter is set
to true. In this example, the text displayed in the TextArea is not to be edited;
hence the parameter is set to false.

Finally, any component can be added to a container class through the inher-
ited method add from the Container class. Thus, the statement
this.add(writingArea) adds the object writingArea to the Dialog win-
dow of the WritingPad object.

The WritingPad class will require instance methods to show the writing pad
in the parent container, write strings to the text area, and erase the text area. The

8.7 Creating a Reusable WritingPad Component 483

method setVisible will be used to show the writing pad. The method append
from the class TextArea will be used to append text to the writing area. The
method setText from the class TextComponent will be used to set the text in the
writing area to the null string, thus effectively erasing the text from the window.

The completed coding for the WritingPad class follows.

import java.awt.*;
import java.awt.event.*;

public class WritingPad extends Dialog
{

private static int X_TOP_LH_CORNER = 5;
private static int Y_TOP_LH_CORNER = 25;
private static int SCREEN_TRIM_SIZE = 20;
private static int HEIGHT_OF_BAR = 30;
private static String EMPTY_STRING = "";
private static TextArea writingArea;
/**
The WritingPad class enables an object that represents an
area of text for writing string data.
@param parent is the container on which the writing pad object
is added.
*/
public WritingPad(Frame parent)
{

super(parent, " This is a WritingPad ..", false);

// get the size of the parent screen
int screenWidth = parent.getWidth();
int screenHeight = parent.getHeight();

// set location and size of dialog box
int xLocationOfBox = (int)(0.075f * screenWidth);
int yLocationOfBox = (int)(0.1f * screenHeight);
int widthOfBox = (int)(0.4f * screenWidth);
int heightOfBox = (int)(0.7f * screenHeight);

// draw dialog box
this.setLayout(null);
this.setBackground(Color.lightGray);
this.setForeground(Color.blue);
this.setLocation(xLocationOfBox,yLocationOfBox);
this.setSize(widthOfBox,heightOfBox);

// set font for writing pad
Font type = new Font("SansSerif",Font.PLAIN,14);

484 Chapter 8 An Introduction to the java.awt Package

// set location and size of writing area
writingArea = new
TextArea("",1,1,TextArea.SCROLLBARS_VERTICAL_ONLY);
writingArea.setLocation(X_TOP_LH_CORNER,Y_TOP_LH_CORNER);
writingArea.setSize((int)(widthOfBox-SCREEN_TRIM_SIZE/2),

heightOfBox-HEIGHT_OF_BAR);

// create writing area
writingArea.setFont(type);
writingArea.setBackground(Color.white);
writingArea.setForeground(Color.blue);
writingArea.setEditable(false);
this.add(writingArea);

// add window listener
addWindowListener(new CloseWritingPad());

}
/**
Makes the writing pad visible on the container.
*/
public void showWritingPad()
{

this.setVisible(true);
}
/**
Writes a string to the writing pad.
@param datum is the string to be written.
*/
public void write(String datum)
{

writingArea.append(datum);
}
/**
Clears the entire area of the writing pad.
*/
public void erase()
{

writingArea.setText(EMPTY_STRING);
}
// inner class to handle event listener
public class CloseWritingPad extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

WritingPad.this.setVisible(false);
}

}
}

8.7 Creating a Reusable WritingPad Component 485

The event listener to close the writing pad has been stored in the inner class
CloseWritingPad. Notice that, in closing the writing pad, it is not disposed of,
as with the WindowPane, but merely hidden from view using
setVisible(false). The rationale behind this approach is that if the writing
pad is ever needed again in the same application, you need only invoke
showWritingPad without having to create a new writing-pad object.

The Program Example_9 is used to test the methods of the WritingPad class.

class Example_9
{

public static void main(String[] args)
{

WindowPane screen = new WindowPane();
screen.showWindowPane();

int width = screen.getWidth();
int height = screen.getHeight();

WritingPad notes = new WritingPad(screen);
notes.showWritingPad();

notes.write("\n\nWidth of window pane: "+
String.valueOf(width)+" pixels");

notes.write("\n\nHeight of window pane: "+
String.valueOf(height)+" pixels");

}
}

Part of the screen shot from the running program is shown below.

486 Chapter 8 An Introduction to the java.awt Package

Figure 8.11 An example of a TextInput component

8.8 Creating a Reusable DialogBox Component

Figure 8.11 illustrates how a Dialog window, Label object, and TextField
object can be used together to provide a reusable TextInput component.

If a Dialog window container has already been created with dimensions
widthOfBox and heightOfBox, then the location and size of the label can be
coded as follows.

// set location and size of label
int xLocationOfLabel = (int)(0.05f * widthOfBox);
int yLocationOfLabel = (int)(0.3f * heightOfBox);
int widthOfLabel = (int)(0.9f * widthOfBox);
int heightOfLabel = (int)(0.25f * heightOfBox);

The numbers in these statements refer to the percentage width and the percent-
age height of the Dialog window.

Before the label can be displayed in the Dialog window, you must set the
font for writing the label. The following code uses the standard Dialog font
described in the Font class:

Font dialog = new Font("Dialog", Font.BOLD, FONT_SIZE);

The label can now be put into the Dialog window container. Notice the reuse
of the inherited methods setLocation, setSize, setForeground, and
setFont from the Component class and the inherited method add from the
Container class.

The actual text for the label is the variable prompt that was passed to the
TextInput constructor as an argument.

// insert prompt into dialog box
textLabel = new Label(prompt, Label.LEFT);
textLabel.setLocation(xLocationOfLabel, yLocationOfLabel);
textLabel.setSize(widthOfLabel,heightOfLabel);
textLabel.setForeground(Color.black);
textLabel.setFont(dialog);
this.add(textLabel);

8.8 Creating a Reusable DialogBox Component 487

The following code illustrates how the text field in Figure 8.11 was created.
First, it is necessary to specify the location and size of the text field with respect
to the size of the Dialog window. Remember the numbers represent the per-
centages of the width and height of the Dialog window.

// set location and size of text field
int xLocationOfField = (int)(0.05f * widthOfBox);
int yLocationOfField = (int)(0.6 * heightOfBox);
int widthOfField = (int)(0.9f * widthOfBox);
int heightOfField = (int)(0.25f * heightOfBox);

Before we draw the text field in the Dialog window, we need to specify the font
of the text to be displayed. We use the standard DialogInput font described in
the Font class.

Font dialogInput = new Font("DialogInput", Font.PLAIN, FONT_SIZE);

The methods used to include the TextField component in the Dialog win-
dow should be very familiar to you now.

// draw text field in dialog box
datum = new TextField(EMPTY_STRING);
datum.setLocation(xLocationOfField, yLocationOfField);
datum.setSize(widthOfField, heightOfField);
datum.setBackground(Color.white);
datum.setForeground(Color.blue);
datum.setFont(dialogInput);
this.add(datum);

After text has been input into the appropriate text field, pressing the Return key
generates an event. Provided an action listener is associated with the text field,
the event can be handled by implementing the actionPerformed method of
the ActionListener interface. You, of course, need to add the action listener
for the text field object as:

datum.addActionListener(this);

If you want to find the particular source of an event, the class EventObject in
the package java.util contains an instance method getSource() that returns
a type Object. The class ActionEvent is a subclass of AWTEvent, and
AWTEvent is a subclass of EventObject. Therefore, the instance method
getSource() is applicable to ActionEvent objects. All the events described in
the package java.awt.event are either subclasses of the class AWTEvent or
exist further down this hierarchy, in which case the instance method

488 Chapter 8 An Introduction to the java.awt Package

getSource() is also applicable to the event classes in the java.awt.event
package.

The ActionListener interface contains only one method to be imple-
mented—actionPerformed. Notice in this implementation that when the
event of pressing the Return key is detected, the information that had been
typed into the text field is retrieved by the getText method inherited by the
class TextField from the TextComponent class and stored in the instance vari-
able inputDatum. After the text has been retrieved, the text field is re-initial-
ized with the empty string (ready for further use in an application), and the
TextInput component (this object) is hidden from view.

public void actionPerformed(ActionEvent event)
{

if (event.getSource().equals(datum))
{

inputDatum = new String(datum.getText());
datum.setText(EMPTY_STRING);
this.setVisible(false);

}
}

By using the getSource method we can discriminate between text fields when
a multifield text-input component is created. The complete code for the
TextInput class follows. Notice that the class implements the
ActionListener interface.

import java.awt.*;
import java.awt.event.*;

public class TextInput extends Dialog implements ActionListener
{

// constants
private static final int FONT_SIZE = 11;
private static final String EMPTY_STRING = "";

// instance variables
private String inputDatum = EMPTY_STRING;
private TextField datum;
private Label textLabel;

/**
The TextInput class enables an object that represents a combination
of a label and text field stored in a dialog box window. Text can be
input into this component.
@param parent is the container that a TextInput object may be added.
@param prompt is a label indicating the nature of the data to be

8.8 Creating a Reusable DialogBox Component 489

input.
*/
public TextInput(Frame parent, String prompt)
{

super(parent, " Input the following datum ..", true);

// set width and height of screen
int screenWidth = parent.getWidth();
int screenHeight = parent.getHeight();

// set location and size of dialog box
int xLocationOfBox = (int)(0.7f * screenWidth);
int yLocationOfBox = (int)(0.1f * screenHeight);
int widthOfBox = (int)(0.25f * screenWidth);
int heightOfBox = (int)(0.125f * screenHeight);

// set location and size of label
int xLocationOfLabel = (int)(0.05f * widthOfBox);
int yLocationOfLabel = (int)(0.3f * heightOfBox);
int widthOfLabel = (int)(0.9f * widthOfBox);
int heightOfLabel = (int)(0.25f * heightOfBox);

// set location and size of text field
int xLocationOfField = (int)(0.05f * widthOfBox);
int yLocationOfField = (int)(0.6 * heightOfBox);
int widthOfField = (int)(0.9f * widthOfBox);
int heightOfField = (int)(0.25f * heightOfBox);

// set fonts
Font dialog = new Font("Dialog", Font.BOLD, FONT_SIZE);
Font dialogInput = new Font("DialogInput", Font.PLAIN,

FONT_SIZE);

// draw dialog box
this.setLayout(null);
this.setBackground(Color.lightGray);
this.setForeground(Color.blue);
this.setLocation(xLocationOfBox,yLocationOfBox);
this.setSize(widthOfBox,heightOfBox);

// insert prompt into dialog box
textLabel = new Label(prompt, Label.LEFT);
textLabel.setLocation(xLocationOfLabel, yLocationOfLabel);
textLabel.setSize(widthOfLabel,heightOfLabel);
textLabel.setForeground(Color.black);
textLabel.setFont(dialog);

490 Chapter 8 An Introduction to the java.awt Package

this.add(textLabel);

// draw text field in dialog box
datum = new TextField(EMPTY_STRING);
datum.setLocation(xLocationOfField, yLocationOfField);
datum.setSize(widthOfField, heightOfField);
datum.setBackground(Color.white);
datum.setForeground(Color.blue);
datum.setFont(dialogInput);
this.add(datum);

// add action listener for text field
datum.addActionListener(this);
// add the window listener for the Dialog window
addWindowListener(new CloseTextInput());

}
/**
Display the text input box on the container.
*/
public void showTextInput()
{

this.setVisible(true);
}
/**
Get the contents of the text input box.
@return Returns the contents of the text field.
*/
public String getString()
{

return inputDatum;
}
public void actionPerformed(ActionEvent event)
{

if (event.getSource().equals(datum))
{

inputDatum = new String(datum.getText());
datum.setText(EMPTY_STRING);
this.setVisible(false);

}
}
private class CloseTextInput extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

inputDatum = new String(datum.getText());
datum.setText(EMPTY_STRING);

8.9 Creating a Reusable CheckBoxes Component 491

Write a class containing a main method to perform the follow-
ing.

(1) Create WindowPane, WritingPad, and TextInput objects.

(2) Input a line of text at the TextInput object, and write this text to the
WritingPad object. You may repeat your code for many different lines of
text.

NOW DO THIS

Figure 8.12 An example of the CheckBoxes component

TextInput.this.setVisible(false);
}

}
}

8.9 Creating a Reusable CheckBoxes Component

The CheckBoxes component illustrated in Figure 8.12 was composed from the
awt components Dialog, Label, and Checkbox.

Since you already know how to create a Dialog window and a Label, we
will concentrate on the creation of the check boxes for the component
CheckBoxes. The signature of the CheckBoxes constructor is:

public CheckBoxes(Frame parent, String prompt, String[] itemsInList);

492 Chapter 8 An Introduction to the java.awt Package

where parent is a container for the CheckBoxes component, prompt describes
the context of the check boxes, for example Jazz musicians in Figure 8.12, and
itemsInList is a one-dimensional array of strings to store in the respective awt
check-box components.

The check boxes illustrated in Figure 8.12 were created using the follow-
ing code.

// instantiate a one-dimensional array item of type Checkbox to store
// individual check box components
item = new Checkbox[numberOfItems];

// for every item in the list
for (int index=0; index != numberOfItems; index++)
{

// instantiate an awt Checkbox object
item[index] = new Checkbox(itemsInList[index],false);

// set the location and size of the awt Checkbox object
item[index].setLocation(xLocationOfItem,

yLocationOfItem+(index*heightOfItem));
item[index].setSize(widthOfItem, heightOfItem);

// add the Checkbox to the Dialog window
this.add(item[index]);

// create an item listener for the Checkbox
item[index].addItemListener(this);

}

A mouse is used to point at and click-select the appropriate boxes. Figure
8.12 illustrates that four jazz musicians have been chosen from the selection. The
events of a check box are detected by the method itemStateChanged defined
in the interface ItemListener. The class ItemEvent contains class constants
that specify whether an item is DESELECTED or SELECTED. There are two meth-
ods, getStateChange and getItem, to determine which items have been
selected. The itemStateChanged method would be implemented as follows.

public void itemStateChanged(ItemEvent event)
{

int indexOfSelection = 0;

// get the name of the item selected
String item = (String)event.getItem();
// search the array of items for the position in the array
// of the selected item
for (int index=0; index != numberOfItems; index++)

8.9 Creating a Reusable CheckBoxes Component 493

{
if (item.equals(namesOfItems[index]))

indexOfSelection = index;
}
// indicate in a boolean array of selected items which items were
// chosen from the check boxes
if (event.getStateChange() == ItemEvent.SELECTED)

selectedItems[indexOfSelection] = true;
else if (event.getStateChange() == ItemEvent.DESELECTED)

selectedItems[indexOfSelection] = false;
}

The boolean array selectedItems contains as many cells as there are
check-box components. From Figure 8.12 this would be eight cells. A cell is set
to true if an item is selected from the corresponding check box; otherwise, the
cell is set to false. The array selectedItems can be returned by an instance
method of the nonstandard component CheckBoxes.

The complete listing of the CheckBoxes component follows.

import java.awt.*;
import java.awt.event.*;

public class CheckBoxes extends Dialog implements ItemListener
{

private static final int POINT_SIZE = 12;
private static final int HEIGHT_OF_BAR = 20;

private boolean[] selectedItems;
private String[] namesOfItems;
private Label textLabel;
private Checkbox[] item;
private int numberOfItems;
/**
The CheckBoxes class enables an object that represents a label and
any number of check boxes defined by the programmer to be
represented in a dialog box.
@param parent is the container to which the CheckBoxes object is
added.
@param prompt is a text prompt indicating the generic content of the
check box labels.
@param itemsInList is an array of labels for the check boxes.
*/
public CheckBoxes(Frame parent, String prompt, String[] itemsInList)
{

super(parent, " Select item(s) then CLOSE ..", true);
numberOfItems = itemsInList.length;

494 Chapter 8 An Introduction to the java.awt Package

addWindowListener(new CloseDialogWindow());
namesOfItems = itemsInList;
selectedItems = new boolean[numberOfItems];

// set width and height of dialog box
int screenWidth = parent.getWidth();
int screenHeight = parent.getHeight();

// set location and size of dialog box
int xLocationOfBox = (int)(0.7f * screenWidth);
int yLocationOfBox = (int)(0.1f * screenHeight);
int widthOfBox = (int)(0.25f * screenWidth);
int heightOfBox = (int)((screenHeight/24)*(numberOfItems))+

3*HEIGHT_OF_BAR;

// set location and size of label
int xLocationOfLabel = (int)(0.125f * widthOfBox);
int yLocationOfLabel = (int)(1.5*HEIGHT_OF_BAR);
int widthOfLabel = (int)(0.9f * widthOfBox);
int heightOfLabel = (int)(HEIGHT_OF_BAR);

// set size and location of first item
int heightOfItem = (int)(screenHeight/24);
int widthOfItem = (int)(0.9f * widthOfBox);
int xLocationOfItem = (int)(0.05f * widthOfBox);
int yLocationOfItem = (int)(2*HEIGHT_OF_BAR+

(int)(heightOfItem/4));

// set fonts
Font dialog = new Font("Dialog", Font.PLAIN, POINT_SIZE);
Font dialogInput = new Font("DialogInput", Font.BOLD,

POINT_SIZE);

// set parameters of dialog box
this.setBackground(Color.lightGray);
this.setForeground(Color.black);
this.setLocation(xLocationOfBox,yLocationOfBox);
this.setSize(widthOfBox,heightOfBox);
this.setFont(dialog);
setLayout(null);

// insert prompt into dialog box
textLabel = new Label(prompt, Label.LEFT);
textLabel.setLocation(xLocationOfLabel, yLocationOfLabel);
textLabel.setSize(widthOfLabel,heightOfLabel);
textLabel.setFont(dialogInput);
textLabel.setForeground(Color.black);
this.add(textLabel);

8.9 Creating a Reusable CheckBoxes Component 495

// insert a check box for each item
item = new Checkbox[numberOfItems];
for (int index=0; index != numberOfItems; index++)
{

item[index] = new Checkbox(itemsInList[index],false);

item[index].setLocation(xLocationOfItem, yLocationOfItem+
(index*heightOfItem));

item[index].setSize(widthOfItem, heightOfItem);

this.add(item[index]);
item[index].addItemListener(this);

}
}
/**
Display the check boxes on the container.
*/
public void showCheckBoxes()
{

for (int index=0; index != numberOfItems; index++)
selectedItems[index] = false;

this.setVisible(true);
}
/**
Get a boolean array containing true for all those boxes checked,
and false if the boxes are not checked.
@return Returns a boolean array of items set to true that have been
checked.
*/
public boolean[] getCheckedBoxes()
{

return selectedItems;
}

public void itemStateChanged(ItemEvent event)
{

int indexOfSelection = 0;
String item = (String)event.getItem();

for (int index=0; index != numberOfItems; index++)
{

if (item.equals(namesOfItems[index]))
indexOfSelection = index;

}

496 Chapter 8 An Introduction to the java.awt Package

Using the code from the class CheckBoxes as a template per-
form the following.

(1) Create files for a RadioButtons class and a ScrollableList class.

(2) Write programs to test the validity of your classes.

Note that if you need assistance with your answers, the code for both the
RadioButtons and ScrollableList classes are available on the CD that
accompanies this book.

NOW DO THIS

if (event.getStateChange() == ItemEvent.SELECTED)
selectedItems[indexOfSelection] = true;

else if (event.getStateChange() == ItemEvent.DESELECTED)
selectedItems[indexOfSelection] = false;

}
// inner class to handle closing dialog box event
private class CloseDialogWindow extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

boolean boxesChecked = false;

// check to see if any boxes are checked
for (int index=0; index != numberOfItems; index++)
{

if (item[index].getState())
{

boxesChecked = true;
break;

}
}

if (boxesChecked)
{

CheckBoxes.this.setVisible(false);

for (int index=0; index != numberOfItems; index++)
{

item[index].setState(false);
}

}
}

}
}

8.10 Java Swing 497

8.10 Java Swing

A successful computer language will evolve over time. The Java language was
introduced in 1995, and is already in its third major version. When a new ver-
sion of a language is released it usually means that new features are added, and
new standard libraries are available. Sometimes the controlling organization will
also announce that some features are “deprecated,” i.e., that those features may
no longer be supported by future compilers and they should no longer be used.

When Java was first released by Sun Microsystems it provided only one way
to create graphical user interfaces—the AWT (Abstract Windowing Toolkit)
that we have been using in this text. Since then however, Sun has added another
component library, commonly known as Java Swing, which can also be used for
GUI development.

It is important to note that Java Swing is not a replacement for the AWT,
since it is actually built on top of the core 1.1 and 1.2 AWT libraries, and
depends extensively on the current event handling mechanism of AWT 1.1.

Java Swing is merely an alternative. In one sense it is an extension. Sun con-
tinues to support the AWT and software developers continue to use it. We do
not believe the AWT will be deprecated by Sun in the foreseeable future. In
fact, the Java Swing classes rely on concepts established for the AWT, and are
based on the same general programming model. For this reason, we have
decided in this textbook to use the original AWT approach. We believe that a
solid foundation in this approach will prepare those students interested in con-
tinuing their studies of Java to be able to master the nuances of the Swing
libraries with a reasonable effort.

In general, Swing components are more versatile than their AWT counter-
parts. Using them, a developer can create a more polished user interface than
can be created with the AWT. You can usually spot a Swing component within
the code of a system, because most of them begin with the letter ‘J’. For exam-
ple, the button class provided by Swing is called JButton, as opposed to the
regular Button class of the AWT.

S U M M A R Y

■ A graphical user interface (GUI) replaces the traditional input of data via a
keyboard and the display of information in textual form on a screen.

■ A GUI typically consists of a container, such as a window or frame into which
components, such as buttons, check boxes, radio buttons, lists, text fields,
and text areas are added.

498 Chapter 8 An Introduction to the java.awt Package

■ The information gathered from the components in a GUI represent data
input. Output from a GUI may take the form of text written into new windows,
text fields, and text areas.

■ The Abstract Windowing Toolkit (AWT) contains classes that enable a pro-
grammer to build GUIs.

■ A container class is created by inheriting all the characteristics of a super-
class, such as the Frame class, and by specifying in the constructor such fea-
tures as the size, location, foreground and background colors of the container,
and type of layout manager used for the components.

■ Always build GUI components as standalone classes. Using an awt compo-
nent directly with the “base” container will reduce the reusability of the com-
ponent with another application.

■ Always capture the size of the monitor and base all dimensions of compo-
nents relative to it. This will enable you to port your applications between dif-
ferent-sized monitors without having to rescale all the components in your
application.

■ A GUI component is created by instantiating a variable of the appropriate
class to create an object. The object is added to the container by using the
add method from the Container class.

■ When a user interacts with a GUI component, for example by pressing a but-
ton, the action of the user creates an event.

■ Associated with every event is an event class. The source and characteristics
of the event may be obtained through constants and methods found in the
appropriate event class. For example, the action of pressing a button gener-
ates an ActionEvent. The source of the event may be determined from the
getActionCommand() instance method in the ActionEvent class.

■ An event is detected through an event listener. Every event has a correspon-
ding event listener whose methods must be implemented in a manner appli-
cable to handling the event for the action on that component. For example,
the action of pressing a button generates an ActionEvent that is detected by
the ActionListener. The ActionListener method actionPerformed must be
implemented in a way that deals with the button being pressed.

■ The event and event listener classes are contained in the package
java.awt.event.

■ The selection of components examined in detail in this chapter have been
labels, check boxes, radio buttons, text fields, text areas, and lists. If you
examine the java.awt package, you may notice these are not the only com-
ponents available in Java.

Short Answer 499

■ Components are added to a container in a sequence predetermined by the
appropriate layout manager in use. If you wish to specify the position and size
of each component in the container, then set the layout manager to null.

Review Questions
True or false

1. Component is an abstract class.

2. A button component is added to a container using the add method from the
Component class.

3. Button, Checkbox, and Label classes all inherit from the Component class.

4. A Frame inherits from a Window class.

5. A Checkbox generates an ActionEvent.

6. It is not necessary to implement all the listener methods of the MouseListener interface.

Short Answer

7. Using your Java documentation, how many different event listeners are there?

8. What instance method would you use to set the size of a Frame?

9. How do you make a Frame visible?

10. How would you set the background color of a Frame to red?

11. How would you set the size and location of a component in a container?

12. What listener methods must be implemented for the KeyListener interface?

13. What is a Label?

14. What is nonexclusive check-box selection?

15. How does a radio button differ from a check box?

16. In a program, how can you retrieve the chosen items from a List?

17. How do you prevent the displayed text in either a TextField or TextArea from being
overwritten?

18. How can you find the source of an event?

19. What is the difference between FlowLayout and GridLayout?

20. What is the purpose of a WindowAdapter class?

21. Why should you want to extend a WindowAdapter class?

500 Chapter 8 An Introduction to the java.awt Package

Exercises
22. Modify the TextInput class to contain instance methods that will return the input

string as either an integer or a floating-point real number. Allow the class to throw an
exception if either an integer or a real number is in the wrong format.

23. Create and test a reusable component containing a label, text field, and a push button.
The purpose of the push button is to clear the text field.

24. Create and test your own reusable Slider class, similar in appearance to that used in the
avi package.

25. Set up a list containing the names of countries. In the same GUI, transfer any three
countries from the list to a separate text area.

26. Use the Java documentation to investigate the BorderLayout manager. Write code to
demonstrate the functionality of the BorderLayout manager.

Programming Problems
27. Create a GUI that will allow a user to type his or her name and password. Read the doc-

umentation of java.awt.TextField class to see how to obscure the password from
being seen on the screen. After the input is completed, display both the name and pass-
word in the MSDOS/terminal window.

28. Create a reusable component containing a text field and two check boxes. The first
check box represents the bold style of font and the second check box the italic style of
font. You can select the style of font as plain (no boxes are checked); bold, italic, or bold
and italic (both boxes are checked). The text field contains a message that changes in
style according to the boxes that are checked.

29. Extend your answer to Question 28 to include a list that contains different fonts.

30. Extend your answer to Question 24 to create three text fields, as well as the slider bar.
The first text field contains a temperature in degrees Fahrenheit, controlled by the posi-
tion of the slider. The second text field the value of the equivalent temperature in
degrees Celsius, and the third text field the value in degrees Kelvin.

31. Create a currency conversion gui as a reusable component that will allow you to select
from a list of world currencies. The GUI should contain a text field to input the current
conversion rate against the US dollar, a text field that allows you to input the number of
dollars, and a text field containing the equivalent amount of money in the currency of
your choice.

32. Create and test a reusable component containing three text areas. The first area allows
you to input a passage of text. The second area displays a frequency analysis of the letters
used in the text. The third text area contains a frequency analysis of the word sizes.

Add push buttons to analyze the text and to clear the three text areas.

C H A P T E R 9

Vectors, Serialization,
and the java.awt
Graphics Class
The chapter is split logically into three parts. The first part explains
how objects may be saved in a data structure similar to a one-dimen-
sional array but with the property of growing or shrinking in size
according to the amount of data there is to store at run-time. This
data structure is known as a vector. A case study is used to extend
the work of the previous chapter on graphical user interfaces, and
show how a vector may be used in practice. The case study helps to
emphasize a natural progression from storing objects in a data struc-
ture to storing objects permanently in a serializable data file.

The Graphics class is yet another class of the awt package. The class con-
tains methods to draw lines and shapes in two-dimensions on the screen, where
the position and size of these shapes can be controlled by a mouse. The second
part of the chapter contains a number of programs to show you how to draw
shapes on the screen, use a mouse to define the envelope of a shape, and an
alternative method of selecting items from a graphical user interface by using a
pop-up menu.

501

502 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

The third and final part of the chapter explains how Java paints the screen,
and examines a technique for preventing the contents of a screen from being
erased by other objects. Another application for the serialization of objects in a
file explains how drawings may be permanently stored and retrieved. Finally, hav-
ing created a drawing, you are shown how to output the graphics to a printer.

By the end of this chapter you should have an understanding of the following
topics.

■ The Vector class and the serialization of objects.

■ Drawing two-dimensional graphical shapes.

■ Using a mouse to set the location and size of a graphical shape.

■ The creation of pop-up menus.

■ The techniques of painting and refreshing the screen.

■ Printing graphics.

9.1 Vectors

Although the declaration of the size of an array may be performed at run-time,
the size of the array is then fixed for the duration of the executing program. An
object instantiated as a Vector, however, will allow for the storage of objects in
a similar data structure to a one-dimensional array, when the number of objects
is not known. A partial listing for the class Vector follows.

public class Vector extends Object implements Cloneable
{

// constructor(s)
public Vector(int initialCapacity);

// methods
public final synchronized void addElement(Object obj);
public final int capacity();
public final synchronized void copyInto(Object[] anArray);
public final synchronized Object elementAt(int index);
public final synchronized Object firstElement();
public final int indexOf(Object elem);
public final synchronized Object lastElement();
public final int size();
public final synchronized void trimToSize();
.
.

}

9.1 Vectors 503

Notice that the constructor will allow you to specify the initial capacity of
the vector. However, when the vector cannot store any more data, the vector
automatically doubles in size to accommodate further data storage, assuming
there is enough computer memory available. A partial listing of the class’s meth-
ods includes the following.

addElement(Object obj)—insert an object into the next free location in the
vector.

capacity()—return the capacity of the Vector.
copyInto(Object[] anArray)—copy the contents of the vector into an array.
elementAt(int index)—return the object stored in the vector at the posi-

tion index.
firstElement()—return the object stored at index position 0 (zero).
indexOf(Object elem)—return the index of the object element stored in the

Vector.
lastElement()—return the object element stored at the position size-1.
size()—return the number of object elements stored in the Vector.
trimToSize()—reduce the capacity of the Vector to the number of elements

stored in the Vector.

Program Example_1 allows a user to input as many single words into a vector as
they wish and display a list of the words. The program demonstrates some of the
methods defined in the Vector class and shows that individual cells of a vector
may be accessed in a similar manner to accessing a one-dimensional array.
Finally the program shows how to copy the contents of a vector into a one-
dimensional array, and re-display the contents on the screen.

// program to demonstrate storing and retrieving data from a Vector

import avi.*;
import java.util.*;

class Example_1
{

static public void main(String[] args)
{

// initial size of vector
final int INITIAL_SIZE = 4;

Window screen = new Window("Example_1.java");
DialogBox inputWord = new DialogBox(screen,"Name of fruit?");

String[] reply = {"continue?","quit?"};

504 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

RadioButtons buttons = new
RadioButtons(screen,"What next?",reply);

Vector dataStore = new Vector(INITIAL_SIZE);
int sizeOfVector;
String word;

screen.showWindow();

do
{

inputWord.showDialogBox();
word = inputWord.getString();

dataStore.addElement(word);
screen.write("index "+dataStore.indexOf(word)+

"\tcontents "+word+
"\tcapacity of vector "+
dataStore.capacity()+"\n");

buttons.showRadioButtons();
}while (buttons.getNameOfButton().equals("continue?"));

// display size, capacity, first element and last element of
// vector
screen.write("\nsize of vector " + dataStore.size()+"\n");
screen.write("capacity of vector " +

dataStore.capacity()+"\n");
screen.write("first element " + dataStore.firstElement()+"\n");
screen.write("last element " + dataStore.lastElement()+"\n");

// input any position within bounds of vector
DialogBox inputPosition = new
DialogBox(screen,"Any position in vector");
int position;
do
{

inputPosition.showDialogBox();
position = inputPosition.getInteger();

} while (position < 0 || position >= dataStore.size());

// display item at given position in vector
screen.write("element at position "+position+" "+

dataStore.elementAt(position)+"\n");

// reduce the capacity of the vector to the size of the vector
dataStore.trimToSize();
sizeOfVector = dataStore.capacity();

// display the new capacity of the trimmed vector
screen.write("\ntrimmed size capacity "+sizeOfVector+"\n");

// list the contents of the vector
screen.write("Contents of Vector\n");
for (int index=0; index != sizeOfVector; index++)

screen.write(dataStore.elementAt(index) + " ");

// copy contents of vector into an array
String[] array = new String[sizeOfVector];
dataStore.copyInto((String[])array);

// list the contents of the array
screen.write("\n\nContents of array initialized from the "+

"vector\n");
for (int index=0; index != array.length; index++)

screen.write(array[index]+" ");
}

}

Notice the capacity of the vector was initially set to 4 by the constructor.
After four items of data had been input, the capacity of the vector was automat-
ically increased to eight. After eight items of data had been input, the capacity
of the vector was doubled again to sixteen.

By specifying the name of an object in the method indexOf, it is possible to
obtain the index of the cell containing the object.

The size of the vector indicates the number of items of data stored,
whereas the capacity of the vector indicates the total number of cells, whether
occupied by data or not.

It is possible to access any cell within the vector by using the appropriate
class methods. In this example, the methods firstElement, lastElement,
and elementAt have been used to find the elements at index 0, 8 and the range
0..8 respectively.

Once a vector has been filled with data and there are wasted cells not being
used, it is possible to trim the vector to the size of the array by using the method
trimToSize.

The contents of the vector can be copied into an array using the method
copyInto; the array may then be processed in the normal manner.

Screen shots from the program being run follow.

9.1 Vectors 505

506 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

9.1 Vectors 507

(1) Create a class Subscriber containing instance variables name, address,
and telephone number, and a constructor and instance methods to retrieve
the variables.

Using program Example_1 for reference, write a program to perform the fol-
lowing.

(2) Create a vector containing telephone Subscriber objects.

(3) Display the entire contents of the vector.

(4) Input the name of a subscriber and display the corresponding address and
telephone number.

NOW DO THIS

The completion of the above exercise will help you to understand the use of
vectors in following case study.

508 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

CASE STUDY

Chemical Elements

Statement of the Problem Write a program to store attributes of chemical elements in a
vector. The program should be capable of adding different chemical elements to the vector,
selecting and displaying individual elements from the vector, listing the entire contents of the
vector, and returning back to the operating system.

The program must use a graphical user interface to communicate with the user of the program.
Before we delve into the graphical components required to create the interface, we need to

examine the attributes of a chemical element. We classify a chemical element by its name,
chemical symbol, and atomic weight; now we can create a class ChemicalElement that encap-
sulates this data.

public class ChemicalElement
{

private String nameOfElement;
private String chemicalSymbol;
private String atomicNumber;

/**
The ChemicalElement class enables an object that represents a
chemical element from the periodic table of elements.
@param name is the name of the element.
@param symbol is the chemical symbol of the element.
@param number is the atomic number of the element.
*/
public ChemicalElement(String name, String symbol, String number)
{

nameOfElement = name;
chemicalSymbol = symbol;
atomicNumber = number;

}

/**
@return The name of the element.
*/
public String getName()
{

return nameOfElement;
}

Case Study: Chemical Elements 509

/**
@return The chemical symbol of the element.
*/
public String getSymbol()
{

return chemicalSymbol;
}

/**
@return the atomic number of the element.
*/
public String getNumber()
{

return atomicNumber;
}

}

The data for each chemical element needs to be input via a reusable graphical compo-
nent. The only component we have created that can be used to input specific data for an ele-
ment is the TextInput component. The limitation of this component is that we have to
create three different components for the three different attributes of a chemical element.

How much better it would be to create a reusable component similar to the one depicted
in Figure 9.1. By combining labels, text fields, and buttons we can create a very useful graph-
ical component for the input of any number of text fields. Figure 9.1 illustrates a
DataInputBox component; the number of labels and text fields are not fixed, but are input
as arguments to the constructor.

Figure 9.1 A DataInputBox component

510 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

The complete listing of the DataInputBox component follows. The component is composed
from the awt Dialog, Label, TextField, and Button components. You have been given enough
information in the previous chapter to be able to read about and understand the construction of
the DataInputBox component.

import java.awt.*;
import java.awt.event.*;

public class DataInputBox extends Dialog implements ActionListener
{

// constants
private static final int FONT_SIZE = 11;
private static final int HEIGHT_OF_BAR = 20;
private static final String EMPTY_STRING = "";

// instance variables
private String[] inputData;
private TextField[] data;
private Label[] textLabels;
private int numberOfItems;

/**
The DataInputBox class enables an object that represents as many
labelled text fields as required, to be used to input textual data.
An indication that the text fields are complete with data is made by
pressing an "OK" button. The contents of the text fields may be
cleared at any time by pressing the "RESET" button.
@param parent is the container on which to add the data input box.
@param prompts is an array of labels for the text fields.
*/
public DataInputBox(Frame parent, String[] prompts)
{

super(parent,
" Input the following data .. press TAB between fields",
true);

numberOfItems = prompts.length;

If you have prepared a GUI where data is to be input to a number of fields, move the cursor
to the next field using the TAB key rather than using the mouse pointer. This technique is

quicker for data entry.

1i

Case Study: Chemical Elements 511

inputData = new String[numberOfItems];
addWindowListener(new CloseDataInput());

// set width and height of screen
int screenWidth = parent.getWidth();
int screenHeight = parent.getHeight();

// set location and size of dialog box
int xLocationOfBox = (int)(0.4f * screenWidth);
int yLocationOfBox = (int)(0.1f * screenHeight);
int widthOfBox = (int)(0.4f * screenWidth);
int heightOfBox = (int)(screenHeight/36)*

(numberOfItems)+6*HEIGHT_OF_BAR;

// set location and size of first label
int xLocationOfLabel = (int)(0.05f * widthOfBox);
int yLocationOfLabel = (int)(2.0f * screenHeight/36);
int widthOfLabel = (int)(0.2f * widthOfBox);
int heightOfLabel = (int)(screenHeight/36);

// set location and size of first text field
int widthOfField = (int)(0.65f * widthOfBox);
int heightOfField = (int)(screenHeight/36);
int xLocationOfField = (int)(0.3f * widthOfBox);
int yLocationOfField = (int)(2*HEIGHT_OF_BAR+

(int)(heightOfField/4));

// set fonts
Font dialog = new Font("Dialog", Font.BOLD, FONT_SIZE);
Font dialogInput = new Font("DialogInput", Font.PLAIN,

FONT_SIZE);

// draw dialog box
this.setLayout(null);
this.setBackground(Color.lightGray);
this.setForeground(Color.blue);
this.setLocation(xLocationOfBox,yLocationOfBox);
this.setSize(widthOfBox,heightOfBox);

// set location and size of "OK" button
int xLocationOfOKButton = (int)(0.30f*widthOfBox);
int yLocationOfOKButton = (int)(0.8f*heightOfBox);
int widthOfButton = (int)(0.8f*widthOfLabel);
int heightOfButton = (int)(heightOfLabel);

512 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

// create button
Button okButton = new Button("OK");
okButton.setLocation(xLocationOfOKButton,

yLocationOfOKButton);
okButton.setSize(widthOfButton, heightOfButton);
okButton.setBackground(Color.lightGray);
okButton.setForeground(Color.black);

// add push button to dialog box and action listener for
// button
this.add(okButton);
okButton.addActionListener(this);

// set location and size of "RESET" button
int xLocationOfResetButton = (int)(0.55f*widthOfBox);
int yLocationOfResetButton = (int)(0.8f*heightOfBox);

// create button
Button resetButton = new Button("RESET");
resetButton.setLocation(xLocationOfResetButton,

yLocationOfResetButton);
resetButton.setSize(widthOfButton, heightOfButton);
resetButton.setBackground(Color.lightGray);
resetButton.setForeground(Color.black);

// add push button to dialog box and action listener for
// button
this.add(resetButton);
resetButton.addActionListener(this);

// insert a label and a text field for each item
// draw text field in dialog box
textLabels = new Label[numberOfItems];
data = new TextField[numberOfItems];

for (int index=0; index != numberOfItems; index++)
{

// insert prompt(s)
textLabels[index] = new Label(prompts[index],

Label.LEFT);
textLabels[index].setLocation(xLocationOfLabel,

yLocationOfLabel+(index*heightOfLabel));
textLabels[index].setSize(widthOfLabel, heightOfLabel);

Case Study: Chemical Elements 513

textLabels[index].setForeground(Color.black);
textLabels[index].setFont(dialog);
this.add(textLabels[index]);

// insert text field(s)
data[index] = new TextField(EMPTY_STRING,widthOfField);
data[index].setLocation(xLocationOfField,

yLocationOfField+(index*heightOfField));
data[index].setSize(widthOfField, heightOfField);
data[index].setBackground(Color.white);
data[index].setForeground(Color.blue);
data[index].setFont(dialogInput);
this.add(data[index]);

}
}

/**
Display the DataInputBox on the container.
*/
public void showDataInputBox()
{

this.setVisible(true);
}

/**
Get the contents of the text fields.
@return Returns an array of strings representing the contents of the
text fields taken in consecutive order. The contents of the first
text field are stored in cell 0, the contents of the second text
field are stored in cell 1, and so on.
*/
public String[] getFields()
{

return inputData;
}

public void actionPerformed(ActionEvent event)
{

if (event.getActionCommand().equals("OK"))
{

for (int index=0; index != numberOfItems; index++)
{

inputData[index] = new
String(data[index].getText());

514 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

data[index].setText(EMPTY_STRING);
}

this.setVisible(false);
}
else if (event.getActionCommand().equals("RESET"))
{

for (int index=0; index != numberOfItems; index++)
{

data[index].setText(EMPTY_STRING);
inputData[index] = EMPTY_STRING;

}
}

}

// inner class to handle window event
public class CloseDataInput extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

DataInputBox.this.setVisible(false);
}

}
}

A text field is capable of displaying information as well as having data typed into the field.
The Case Study problem states that the program selects an individual chemical element and
display the attributes of the element. If the selection of an individual element is to be based
upon the name of the element, then a TextInput component can be used to input a single
name. Although it is possible to write the attributes of a chemical element to a WritingPad
object, it would be far better to output the attributes to a set of labeled text fields, occupying a
separate graphical component. Figure 9.2 illustrates a DataOutputBox component. You will

Figure 9.2 A DataOutputBox component

Case Study: Chemical Elements 515

notice that it resembles the DataInputBox, but it is without the press buttons and displays a
different message in the title bar.

In Chapter 8 you were asked to write a class RadioButtons. This class can be used in the
program to allow a user to select one of the options to insert a chemical element into the vector,
select an element from the vector, list the entire contents of the vector, or quit the program and
return back to the operating system.

Figure 9.3 illustrates how a RadioButtons object can be used to offer this choice in the
program.

Use the code from the class DataInputBox as a template to
perform the following.

(1) Create a class DataOutputBox. You need to edit out the creation of the two
buttons, allow for any title to be input in the title bar of the dialog box, and
transfer the contents of a string array to a method in the class to permit each
respective text field to be set to the text stored in the array.

Once again, if you need assistance with your answer, the code for the
DataOutputBox is available on the CD that accompanies this book.

NOW DO THIS

Figure 9.3 A RadioButtons component

516 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

There are no further graphical components to consider in this program. To summarize, Figure
9.4 illustrates the dependencies class Example_2 has on the Vector class and the graphical
components created in this and the previous chapter.

The pseudocode for the test program Example_2 follows.

1. show the window pane
2. show the radio buttons
3. get choice from radio buttons
4. while choice is not to quit
5. if choice is to insert chemical element into vector
6. show data input box
7. get contents of fields from box
8. create chemical element object and add this to the vector

Example_2

WindowPane

WritingPad

TextInput

RadioButtons

DataInputBox

DataOutputBox

java.util.Vector

Figure 9.4 UML dependencies

Case Study: Chemical Elements 517

9. else if choice is to find a chemical element
10. show text input box
11. get name of chemical element
12. for every element in the vector
13. get a chemical element object from the vector
14. if name of element is the same as the name from the object
15. show the data output box
16. build an array from the attributes of the object in the vector
17. set the text fields of the data output box from the array
18. else if choice is to list all the elements
19. show the writing pad
20. for every element in the vector
21. get a chemical element object from the vector
22. write the attributes of the chemical element object
23. show the radio buttons
24. get choice from radio buttons

A listing of the test program Example_2 follows.

import java.util.Vector;

class Example_2
{

public static void main(String[] args)
{

// arrays used in graphical components
String[] prompts = {"Element","Symbol","Atomic Number"};
String[] whatNext = {"Insert Element","Find Element",

"List all Elements","Quit"};

// array to store data for an element
String[] fields = new String[3];

// create a vector to store ChemicalElement objects
Vector dataStore = new Vector();

// instantiate a number of graphical components for use in the
// GUI
WindowPane screen = new WindowPane();
RadioButtons buttons = new
RadioButtons(screen, "What next?", whatNext);
TextInput element = new TextInput(screen, "Element?");
DataInputBox input = new DataInputBox(screen, prompts);
DataOutputBox output = new

518 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

DataOutputBox(screen, prompts, "The Chemical Elements");
WritingPad notes = new WritingPad(screen);

// show the screen and get the initial choice
screen.showWindowPane();
buttons.showRadioButtons();
String choice = buttons.getNameOfButton();

while (! choice.equals("Quit"))
{

// insert a ChemicalElement object into the vector
if (choice.equals("Insert Element"))
{

// input data of chemical element
input.showDataInputBox();
fields = input.getFields();

// store chemical element object in vector
dataStore.addElement(new
ChemicalElement(fields[0],fields[1],fields[2]));

}

// search the vector for a chemical element
else if (choice.equals("Find Element"))
{

element.showTextInput();
String nameOfElement = element.getString();

// search through vector
for (int index=0; index != dataStore.size();

index++)
{

ChemicalElement datum = (ChemicalElement)
dataStore.elementAt(index);

// check on the name of the element
if (nameOfElement.equals(datum.getName()))
{

output.showDataOutputBox();
fields[0] = datum.getName();
fields[1] = datum.getSymbol();
fields[2] = datum.getNumber();

Case Study: Chemical Elements 519

// display chosen chemical element
output.setFields(fields);

}
}

}

// list the contents of the vector
else if (choice.equals("List all Elements"))
{

ChemicalElement datum;

notes.showWritingPad();
for (int index=0; index != dataStore.size();

index++)
{

datum = (ChemicalElement)
dataStore.elementAt(index);

notes.write(datum.getName()+
" "+datum.getSymbol()+
" "+datum.getNumber()+"\n");

}
notes.write("\n");

}

// get next choice of what to do
buttons.showRadioButtons();
choice = buttons.getNameOfButton();

}
}

}

A screen shot from the running program follows.

520 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

After running this program several times, you may feel the need to be able to store the con-
tents of the vector in a file so that it can be retrieved at a later time and re-loaded into the vec-
tor. This feature will be dealt with in the next section under serializable files.

9.2 Saving and Loading Serializable Objects

The only saving of data in files that we have done so far in the book is saving
text in a text file. Saving objects in a file is a new experience!

The process of saving objects to a stream is called serialization because each
object is assigned a serial number on the stream

Object streams are far easier to use than the text streams that we looked at in
Chapter 7. One big advantage is that you don’t need to separate numbers and

9.2 Serialization and Loading Serializable Objects 521

strings when writing to or reading from a file. The serialization mechanism
takes care of this automatically. You simply write and read objects. For this to
work, each of the classes whose objects are to be stored must implement the
Serializable interface. In our example the ChemicalElements class must
implement the Serializable interface. The Serializable interface defines
no methods or constants. Any class that implements Serializable may have
its object written to and read from a stream using classes found in the java.io
package.

To save objects to a disk file you should store all the objects in a single struc-
ture such as a vector and write the vector to the file. The process of saving an
objects to a file may be divided into the following stages.

■ Create a name under which to save the file, where screen is the name of the
container class on which to draw the FileDialog object.

FileDialog file = new FileDialog(screen,"",FileDialog.SAVE);
file.show();

String filename = file.getFile();

■ Create an output stream.

FileOutputStream fos = new FileOutputStream(filename);

■ Write the entire data structure (vector store) to the output file, flush the
buffer, and the close stream.

ObjectOutputStream out = new ObjectOutputStream(fos);

out.writeObject(store);
out.flush();
out.close();

The ObjectOutputStream is used to serialize objects to a stream. The
writeObject method serializes an object, the flush method writes any
remaining data on the stream to the file, and the close method closes the
stream.

Loading objects may be thought of as the reverse of saving objects, and can
be broken down into the following stages.

■ Obtaining the name of the file to be loaded.

FileDialog file = new FileDialog(screen,"",FileDialog.LOAD);
file.show();

String filename = file.getFile();

■ Create a file input stream.

FileInputStream fis = new FileInputStream(filename);

522 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

■ Create an object input stream, read the objects into a vector newStore, and
close the stream.

ObjectInputStream in = new ObjectInputStream(fis);

Vector newStore = (Vector)in.readObject();
in.close();

The ObjectInputStream is used to deserialize objects to a stream. The
readObject method deserializes an object; the close method closes the
stream.

Modify program Example_2 as follows.

(1) Add two more buttons to the radio buttons class—”Load Elements” and
“Save Elements”.

(2) Insert the following code to load elements.

// load the contents of the file into the vector

else if (choice.equals("Load Elements"))

{

FileDialog file = new

FileDialog(screen,"",FileDialog.LOAD);

file.show();

String filename = file.getFile();

if (filename != null)

{

try

{

FileInputStream fis = new

FileInputStream(filename);

ObjectInputStream in = new

ObjectInputStream(fis);

Vector newStore = (Vector)in.readObject();

in.close();

dataStore = newStore;

}

(continued)

NOW DO THIS

9.2 Serialization and Loading Serializable Objects 523

(continued)

catch (Exception e){}

}

}

(3) Insert the following code to save elements.

// save the contents of the vector in a serializable file

else if (choice.equals("Save Elements"))

{

FileDialog file = new

FileDialog(screen,"",FileDialog.SAVE);

file.show();

String filename = file.getFile();

if (filename != null)

{

try

{

FileOutputStream fos = new

FileOutputStream(filename);

ObjectOutputStream out = new

ObjectOutputStream(fos);

out.writeObject(dataStore);

out.flush();

out.close();

}

catch (IOException e){}

}

}

(4) Modify the ChemicalElement class to implement the Serializable inter-
face.

(5) Save the modifications to Example_2 using a different filename, remember
to change the class name from Example_2 to the new name; compile and
run the program.

NOW DO THIS

524 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

9.3 The Graphics Class

Within the java.awt package is an abstract Graphics class that specifies
methods for doing line drawing, area filling, image painting, area copying,
graphics-output clipping, and displaying strings. A partial listing of the
Graphics class follows, showing some of the methods we will be using to output
strings and draw straight lines, squares, rectangles, circles, and ellipses. For a full
description of the Graphics class, turn to your downloaded Java documentation.

public abstract class Graphics extends Object
{

// instance methods
.
.
public abstract void drawLine(int x1,int y1,int x2,int y2);
public abstract void drawOval(int x,int y,int width,int height);
public void drawRect(int x,int y,int width,int height);
public abstract void drawString(String str,int x,int y);
.
.

}

The next program in this chapter creates a window on which to draw shapes
from the Graphics class. Notice that a new method, paint, has been coded in
the class MyGraphicsWindow without any visible means of invoking the method
from within either the class or from the main method of class Example_3.

The Graphics class contains the method paint that is automatically
invoked by the window manager; it should not normally be invoked directly
from within a program. You may override the paint method in your own pro-
gram and let the window manager invoke the method automatically.

// program to create a window container and draw two-dimensional shapes
// from the Graphics class

import java.awt.*;
import java.awt.event.*;

class MyGraphicsWindow extends Frame
}

private MyGraphicsWindow bigBrother;

// constructor
public MyGraphicsWindow(int width, int height, int x, int y)
{

9.3 The Graphics Class 525

// call Frame's constructor
super("My graphics window");

// set colors of window
setBackground(Color.yellow);
setForeground(Color.black);

// set dimensions and position of window on screen
setSize(width, height);
setLocation(x,y);

// store object that invoked constructor
bigBrother = this;

// add listener to detect window being closed
addWindowListener(new CloseMyWindow());

}

// instance method to display window on screen
public void showWindow()
{

this.show();
}

public void paint(Graphics g)
{

// draw a pair of lines
g.drawLine(50,50,350,50);
g.drawLine(300,25,300,250);

// draw a rectangle
g.drawRect(50,75,200,150);

// draw an ellipse
g.drawOval(75,90,150,80);

// draw a circle
g.drawOval(150,125,40,40);

// print text in the graphics window
g.drawString("A masterpiece in contemporary art !",50,250);

}

// subclass of WindowAdapter
private class CloseMyWindow extends WindowAdapter

526 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

{
// overridden method of superclass
public void windowClosing(WindowEvent event)
{

bigBrother.dispose();
System.exit(0);

}
}

}

public class Example_3
{

public static void main(String[] args)
{

MyGraphicsWindow window = new MyGraphicsWindow(400,300,50,50);
window.showWindow();

}
}

Results from the running program follow.

9.4 Mouse Events 527

9.4 Mouse Events

For interactive drawing of shapes on the screen, the position of the mouse can
provide the coordinates for drawing a shape.

Actions such as clicking, releasing, and pressing the mouse button all gener-
ate mouse events that can be detected by the mouse listener. The appropriate
method from the following MouseListener interface is then implemented as a
reaction to the event taking place.

public abstract interface MouseListener extends EventListener
{

// public instance methods
public abstract void mouseClicked(MouseEvent e);
public abstract void mouseEntered(MouseEvent e);
public abstract void mouseExited(MouseEvent e);
public abstract void mousePressed(MouseEvent e);
public abstract void mouseReleased(MouseEvent e);

}

These methods are implemented in the java.awt.event package as do-noth-
ing methods in the MouseAdapter class. As with the WindowAdapter class, the
MouseAdapter class will also be extended to create appropriate mouse-listener
methods.

The MouseEvent class, in the package java.awt.event, describes two
instance methods that allow us to examine the position of the mouse in relation-
ship to the coordinates of the screen. These methods are:

public int getX();
public int getY();

The class WhereIsTheMouse implements the mousePressed method to draw a
string on the screen indicating the position of the mouse when the left-button is

Read the Java documentation of the Graphics class to modify
program Example_3 to perform the following.

(1) Remove the code to draw the shapes and text shown in the screen output.

(2) Experiment by drawing shapes for a polygon and a polyline. You must choose
the number of sides for each component.

(3) Experiment by drawing shapes for a raised filled 3D rectangle, and a filled
arc.

NOW DO THIS

528 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

A Graphics object cannot be created directly though a constructor—it can be obtained with
the getGraphics() method of Component. In the programs that follow, a Graphics

object g is created using the statement Graphics g = getGraphics().

1i

pressed. The methods getX() and getY() are from the class MouseEvent, and
the method drawString is from the Graphics class. Notice that the
WhereIsTheMouse class extends the WindowPane class in order to be able to
draw on a screen.

// program to plot mouse coordinates on the screen

import java.awt.*;
import java.awt.event.*;

class WhereIsTheMouse extends WindowPane
{

// constructor
public WhereIsTheMouse()
{

super();
this.setForeground(Color.white);
addMouseListener(new HandleMouseEvents());

}

public void begin()
{

this.showWindowPane();
}

private class HandleMouseEvents extends MouseAdapter
{

public void mousePressed(MouseEvent event)
{

// get coordinates of mouse
int x = event.getX();
int y = event.getY();

Graphics g = getGraphics();

// display message on screen
g.drawString("+ ["+String.valueOf(x)+","+

String.valueOf(y)+"]",x,y);
}

}
}

9.4 Mouse Events 529

Program Example_4 is used to test the methods of the WhereIsTheMouse class.

class Example_4
{

public static void main(String[] args)
{

WhereIsTheMouse mouseFinder = new WhereIsTheMouse();
mouseFinder.begin();

}
}

Here is a screen shot from a running program.

The origin of coordinates is taken to be the upper left-hand corner of the
screen. From the screen shot you will notice that the positive x-axis is to the
right of the origin and the positive y-axis is below the origin. You may think of
the x-axis as the top edge of the screen and the y-axis as the left-hand edge of
the screen.

The following technique uses a mouse to determine the coordinates of two
points on the screen. Pressing the mouse button determines the position of the
first point. Dragging the mouse (moving the mouse with the button kept

530 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

The events of dragging a mouse and moving a mouse are also MouseEvents. The appropri-
ate listener for these two mouse events is the MouseMotionListener interface. Any class

implementing this interface must implement the listener methods mouseDragged and
mouseMoved. A MouseMotionAdapter class exists that contains do-nothing implementations of
these two listener methods. Therefore, it is possible to subclass the MouseMotionAdapter
class and override either of the two listener methods.

1i

pressed) to another location on the screen and releasing the mouse button deter-
mines the position of the second point. It is necessary to listen for two types of
events—pressing the mouse button and releasing the mouse button.

Upon detecting the mouse button being pressed or released, the methods
getX() and getY() from the class MouseEvent can capture the position of the
mouse. The two points formed by pressing the mouse button, dragging the
mouse, and then releasing the mouse button form opposite corners of an imagi-
nary rectangle. The calculations of the coordinates for the upper left-hand cor-
ner and the width and height of the imaginary rectangle will vary when you are
dragging the mouse either up or down the screen and to the right or left as
depicted in Figure 9.5.

Note the coordinates [x1,y1] of a point refer to the horizontal position x1 and
the vertical position y1 of the point from the origin of coordinates. The differ-
ence y1 � y2 represents the vertical distance between two points provided y1 > y2.

The coordinates of the upper left-hand corner and the width and height of
the imaginary rectangle can be calculated using the following expressions, irre-
spective of the direction of the movement of the mouse.

upperLeftX = Math.min(x1,x2); upperLeftY = Math.min(y1,y2);
width = Math.abs(x1-x2); height = Math.abs(y1-y2);

Note that the mathematical class method min will return the smaller of two
numbers, and the method abs will return the positive value of the difference
between two numbers.

We can capture the coordinates of the mouse at the point where it is pressed
using the following mousePressed implementation.

public void mousePressed(MouseEvent event)
{

upperLeftX=0; upperLeftY=0; width=0; height=0;

x1=event.getX();
y1=event.getY();

}

9.4 Mouse Events 531

direction
of drag

[x2,y2]

[x1,y1]

x1-x2

y1-y2

direction
of drag

[x2,y1] [x1,y1]

x1-x2

y2-y1

[x2,y2]

direction
of drag

[x1,y2] [x2,y2]

x2-x1

y1-y2

[x1,y1]

direction
of drag

[x1,y1]

[x2,y2]

x2-x1

y2-y1

X AXIS

Y AXIS

[0,0]

Figure 9.5 Constructing rectangles

We can also capture the coordinates of the mouse at the point where the mouse
button is released (having first dragged the mouse to a new position) using the
following mouseReleased implementation.

public void mouseReleased(MouseEvent event)
{

x2=event.getX();
y2=event.getY();

upperLeftX = Math.min(x1,x2);
upperLeftY = Math.min(y1,y2);
width = Math.abs(x1-x2);
height = Math.abs(y1-y2);

.

.

532 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

Now that we have defined an imaginary rectangle into which we can draw a fig-
ure, we can (in the same mouseReleased implementation) draw the appropri-
ate shape using the methods from the Graphics class. The following code from
the mouseReleased class is used to draw a rectangle.

.

.

Graphics g = getGraphics();

g.drawRect(upperLeftX,upperLeftY,width,height);
}

The ElasticRectangle class brings together the skeletal code developed in
this section and a class that will permit drawing a rectangle of any size anywhere
on the screen.

// program to draw any-sized rectangle on the screen

import java.awt.*;
import java.awt.event.*;

public class ElasticRectangle extends WindowPane
{

// coordinate of upper-left hand corner of a rectangle
private int upperLeftX, upperLeftY;
// size of surrounding rectangle
private int width, height;
// coordinates of two selected points
private int x1,y1,x2,y2;

// constructor
public ElasticRectangle()
{

super();
setForeground(Color.white);
addMouseListener(new HandleMouseEvents());

}

// instance method
public void draw()
{

this.show();
}

9.4 Mouse Events 533

// inner classes to handle mouse and window events
private class HandleMouseEvents extends MouseAdapter
{

// capture initial coordinates of mouse
public void mousePressed(MouseEvent event)
{

upperLeftX=0; upperLeftY=0; width=0; height=0;

x1=event.getX();
y1=event.getY();

}

// draw the appropriate shape when mouse button released;
// shape will be drawn between the coordinates (x1,y1) and
// (x2,y2)
public void mouseReleased(MouseEvent event)
{

Graphics g = getGraphics();
x2=event.getX();
y2=event.getY();
upperLeftX = Math.min(x1,x2);
upperLeftY = Math.min(y1,y2);
width = Math.abs(x1-x2);
height = Math.abs(y1-y2);
g.drawRect(upperLeftX,upperLeftY,width,height);

}
}

}

Program Example_5 is used to test the validity of the methods of our
ElasticRectangle class.

class Example_5
{

public static void main(String[] args)
{

ElasticRectangle shape = new ElasticRectangle();
shape.draw();

}
}

A partial screen shot from running program follows.

534 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

9.5 Pop-Up Menus

We previously defined an imaginary rectangle into which we can draw a figure.
However, there is no need to be limited to drawing a rectangular shape; it is also
possible in the same mouseReleased implementation to draw an appropriate
straight line, square, rectangle, circle, or ellipse using the appropriate methods
from the Graphics class. The following partial implementation of the
mouseReleased method assumes the existence of a string variable drawShape
that has prerecorded the type of shape to be drawn.

public void mouseReleased(MouseEvent event)
{

.

.

Graphics g = getGraphics();

if (drawShape.equals("line"))
g.drawLine(x1,y1,x2,y2);

9.5 Pop-Up Menus 535

Figure 9.6 Examples of pop-up menus

else if (drawShape.equals("square"))
g.drawRect(upperLeftX,upperLeftY,width,width);

else if (drawShape.equals("rectangle"))
g.drawRect(upperLeftX,upperLeftY,width,height);

else if (drawShape.equals("circle"))
g.drawOval(upperLeftX,upperLeftY,width,width);

else if (drawShape.equals("ellipse"))
g.drawOval(upperLeftX,upperLeftY,width,height);

}

In developing a program to draw various shapes on the screen, we must give the
user a choice of what to draw and also a choice of what color to use in drawing
the shape. A pop-up menu will appear in response to some trigger event, such as
pressing the right button on the mouse. Figure 9.6 shows the set of pop-up
menus used in this section.

The pop-up menus illustrated in Figure 9.6 were created using the following
code. The contents of the pop-up menus are stored as strings in one-dimen-
sional arrays.

String[] colorNames = {"black","blue","cyan","gray","green",
"magenta","red","yellow"};

String[] shapeNames = {"line","square","rectangle","circle","ellipse"};

An abridged version of the class PopupMenu from the java.awt package follows:

public class PopupMenu ..
{

// constructors
public PopupMenu();

public Popupmenu(String label);

536 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

// instance method(s)
public void show(Component origin, int x, int y);
.
.

}

To create a pop-up menu, create a PopupMenu object:

PopupMenu menu = new PopupMenu();

Create two further submenu objects and add these to the main menu:

PopupMenu colors = new PopupMenu("colors");
menu.add(colors);
PopupMenu shapes = new PopupMenu("shapes");
menu.add(shapes);

Using the methods from the MenuItem class, create MenuItem objects. This
class encapsulates a menu item with a specified textual label. Use the
setActionCommand to specify an identifying string that is included in
ActionEvent events generated by the menu item.

Build the menu for the color of the shapes:

for (int index=0; index != colorNames.length; index++)
{

MenuItem mi = new MenuItem(colorNames[index]);
mi.setActionCommand(colorNames[index]);
mi.addActionListener(this);
colors.add(mi);

}

Then build the menu for the names of the shapes:

for (int index=0; index != shapeNames.length; index++)
{

MenuItem mi = new MenuItem(shapeNames[index]);
mi.setActionCommand(shapeNames[index]);
mi.addActionListener(this);
shapes.add(mi);

}

9.5 Pop-Up Menus 537

Add the last menu item to the main menu that does not require a submenu:

MenuItem mi = new MenuItem("clear");
mi.setActionCommand("clear");
mi.addActionListener(this);
menu.add(mi);

Finally, add the pop-up menu with the component that it appears over:

this.add(menu);

When an AWTEvent is delivered to a component, there is some default process-
ing that goes on before the event is dispatched to the appropriate event listeners.
The Java run-time system will dispatch a mouse event to either the
processMouseEvent() method or processMouseMotionEvent(), depending
upon the type of the mouse event that occurred. Each of these methods will
send the event object to the appropriate listener. By overriding either of the
methods you can intercept the event object before it is passed on to a listener.

The MouseEvent class contains a method isPopupTrigger that will detect
whether a specific mouse event was, in fact, a trigger event. By overriding the
processMouseEvent method it is possible to detect whether a mouse button
has acted as a trigger.

public void processMouseEvent(MouseEvent event)
{

if (event.isPopupTrigger())

// popup the menu over the container item
menu.show(this,event.getX(), event.getY());

else
// invoke the superclass version of the processMouseEvent
// to deal with mouse events other than a popup trigger
super.processMouseEvent(event);

}

The SketchPad class that follows contains pop-up menus that allow a user to
select the color and name of a shape to draw on the screen. Once a shape has
been chosen, the mouse is used to define two points on the screen that define
the size of the shape to be drawn. Several different geometrical shapes can be
drawn on the sketch pad. To erase the shapes, the user can select Clear from the
main pop-up menu. You now have enough information to be able to read
through the following code and understand its functionality.

538 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

import java.awt.*;
import java.awt.event.*;

public class SketchPad extends Dialog implements ActionListener
{

private static int X_TOP_LH_CORNER = 5;
private static int Y_TOP_LH_CORNER = 25;
private static int SCREEN_TRIM_SIZE = 20;
private static int HEIGHT_OF_BAR = 30;

private int widthOfBox;
private int heightOfBox;

// coordinate of upper-left hand corner of a rectangle
private int upperLeftX, upperLeftY;
// size of surrounding rectangle
private int width, height;
// coordinates of two selected points
private int x1,y1,x2,y2;

// chosen color and shape - initialized to default values
String drawColor = new String("black");
String drawShape = new String("line");

// contents of the popup menus stored in arrays
String[] colorNames =
{"black","blue","cyan","gray","green","magenta","red","yellow"};
String[] shapeNames =
{"line","square","rectangle","circle","ellipse"};

PopupMenu menu;

/**
The SketchPad class enables an object that allows drawings of two-
dimensional shapes.
The shapes are contained within their own window.
@param parent is the container for the SketchPad window.
@param mode indicates whether the SketchPad is modal.
*/
public SketchPad(Frame parent, boolean mode)
{

super(parent," This is a SketchPad .. right-click mouse button "+
"for menu", mode);

int screenWidth = parent.getWidth();
int screenHeight = parent.getHeight();

9.5 Pop-Up Menus 539

// set location and size of dialog box
int xLocationOfBox = (int)(0.075f * screenWidth);
int yLocationOfBox = (int)(0.1f * screenHeight);
widthOfBox = (int)(0.4f * screenWidth);
heightOfBox = (int)(0.7f * screenHeight);

// draw dialog box
this.setLayout(null);
this.setBackground(Color.white);
this.setForeground(Color.blue);
this.setLocation(xLocationOfBox,yLocationOfBox);
this.setSize(widthOfBox,heightOfBox);

// initialize components
initializeMenuComponents();

// set up remaining listeners
addMouseListener(new HandleMouseEvents());
addWindowListener(new CloseSketchPad());

}

/**
Display the SketchPad object on the screen.
*/
public void showSketchPad()
{

this.setVisible(true);
}

// helper methods
private void initializeMenuComponents()
{

// instantiate main popup menu
menu = new PopupMenu();

// add colors and shapes to the main menu
PopupMenu colors = new PopupMenu("colors");
menu.add(colors);
PopupMenu shapes = new PopupMenu("shapes");
menu.add(shapes);

for (int index=0; index != colorNames.length; index++)
{

MenuItem mi = new MenuItem(colorNames[index]);
mi.setActionCommand(colorNames[index]);
mi.addActionListener(this);

540 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

colors.add(mi);
}

for (int index=0; index != shapeNames.length; index++)
{

MenuItem mi = new MenuItem(shapeNames[index]);
mi.setActionCommand(shapeNames[index]);
mi.addActionListener(this);
shapes.add(mi);

}

MenuItem mi = new MenuItem("clear");
mi.setActionCommand("clear");
mi.addActionListener(this);
menu.add(mi);

this.add(menu);
}

/**
Changes the color of a graphic to correspond with chosen color from
the menu.
@param g is a graphics object.
*/
protected void selectColor(Graphics g)
{

for (int index=0; index != colorNames.length; index++)
{

if (drawColor.equals(colorNames[index]))
{

switch (index)
{

case 0: g.setColor(Color.black);break;
case 1: g.setColor(Color.blue);break;
case 2: g.setColor(Color.cyan);break;
case 3: g.setColor(Color.gray);break;
case 4: g.setColor(Color.green);break;
case 5: g.setColor(Color.magenta);break;
case 6: g.setColor(Color.red);break;
case 7: g.setColor(Color.yellow);

}
}

}
}

9.5 Pop-Up Menus 541

public void actionPerformed(ActionEvent event)
// method to detect which item is chosen from a menu
{

Graphics g = getGraphics();
Object source = event.getActionCommand();

// check for color chosen
for (int index=0; index != colorNames.length; index++)

if (source.equals(colorNames[index]))
{

drawColor =colorNames[index];
return;

}

// check for shape chosen
for (int index=0; index != shapeNames.length; index++)

if (source.equals(shapeNames[index]))
{

drawShape = shapeNames[index];
return;

}

// check for clear
if (source.equals("clear"))
{

g.clearRect(0,0,widthOfBox,heightOfBox);
return;

}
}

public void processMouseEvent(MouseEvent event)
{

if (event.isPopupTrigger())
menu.show(this,event.getX(), event.getY());

else
super.processMouseEvent(event);

}

// inner classes to handle mouse and window events
private class HandleMouseEvents extends MouseAdapter
{

// capture initial coordinates of mouse
public void mousePressed(MouseEvent event)

542 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

{
upperLeftX=0; upperLeftY=0; width=0; height=0;

x1=event.getX();
y1=event.getY();

}

// draw the appropriate shape when mouse button released;
// shape will be drawn between the coordinates (x1,y1) and
// (x2,y2)
public void mouseReleased(MouseEvent event)
{

Graphics g = getGraphics();

selectColor(g);
x2=event.getX();
y2=event.getY();

upperLeftX = Math.min(x1,x2);
upperLeftY = Math.min(y1,y2);
width = Math.abs(x1-x2);
height = Math.abs(y1-y2);

// draw appropriate shape
if (drawShape.equals("line"))

g.drawLine(x1,y1,x2,y2);
else if (drawShape.equals("square"))

g.drawRect(upperLeftX,upperLeftY,width,width);
else if (drawShape.equals("rectangle"))

g.drawRect(upperLeftX,upperLeftY,width,height);
else if (drawShape.equals("circle"))

g.drawOval(upperLeftX,upperLeftY,width,width);
else if (drawShape.equals("ellipse"))

g.drawOval(upperLeftX,upperLeftY,width,height);
}

}

private class CloseSketchPad extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

SketchPad.this.dispose();
}

}
}

9.5 Pop-Up Menus 543

Program Example_6 tests the methods of the class SketchPad.

class Example_6
{

public static void main(String[] args)
{

WindowPane screen = new WindowPane();
screen.showWindowPane();

SketchPad geoShapes = new SketchPad(screen, false);
geoShapes.showSketchPad();

}
}

Here is a screen shot of the running program.

544 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

9.6 Painting the Screen

There is one major drawback with the SketchPad class. To see what the draw-
back is, modify Program Example_6 to create two SketchPad objects. Run the
program; both sketch pads will appear, one on top of the other. Move the top
sketch pad and place it alongside the lower sketchpad. Draw shapes on the
lower sketch pad. Move the upper sketch pad back over the lower pad, and then
away from the lower pad. You will notice that the original drawings of the
shapes have been erased. What can be the reason for this behavior?

As you have just witnessed, when you make a change to a drawing, your
drawing is not automatically updated. A window is automatically painted by the
window manager whenever the window appears for the first time or when it is
minimized, then maximized again. In the case of the sketch pad, we needed to
deliberately repaint the screen after the upper sketch-pad object has been moved
away from the lower sketch-pad object, thereby restoring the previously drawn
shapes.

The Graphics class contains two methods, paint and repaint, that will
allow the programmer to paint the window when necessary. However, the paint
method is automatically invoked by the window manager and should not normally
be invoked directly from within a program. If you want a window to be repainted,
then call repaint, which will in turn invoke the paint method for you.

Alternatively, you can override the paint method in your own program and
let the window manager invoke the method automatically. However, remember
not to invoke the paint method directly in your program.

The SketchPad class did not contain any data structure for storing the
drawings of the shapes, so there was no means of referring back to the history of
what had already been drawn. If we had overridden the paint method in the
SketchPad class, then there would be no means of retrieving previously drawn
shapes in order to repaint them on the screen.

Before we can save graphical objects in a data structure we first need to cre-
ate them. In fact, it is necessary to create new classes of Line, Square,
Rectangle, Circle, and Ellipse. These classes all inherit from the superclass
Shape, which also needs to created. Figure 9.7 illustrates the hierarchy of these
shape classes.

The implementation of the superclass Shape follows.

Modify SketchPad to allow for drawing regular polygons.NOW DO THIS

9.6 Painting the Screen 545

import java.io.*;
import java.awt.*;

abstract class Shape implements Serializable
{

protected int x1,y1,x2,y2;
protected Color color;

public Shape(){};
public abstract void drawShape(Graphics g);

}

Shape

Square

Rectangle

Circle

Ellipse

Line

Figure 9.7 A hierarchy of shapes

546 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

Complete the classes for a Line, Square, Circle, and Ellipse.NOW DO THIS

As you can see, the abstract class declares the basic attributes of a shape, such as
the coordinates of two points needed to form the shape and the color of the
shape. The class also declares an abstract method for drawing a shape. As an
example of the coding of the subclasses, consider the contents of the class
Rectangle that inherits from the class Shape.

import java.io.*;
import java.awt.*;

public class Rectangle extends Shape implements Serializable
{

public Rectangle(int x1,int y1,int x2,int y2,Color c)
{

this.x1=x1; this.y1=y1; this.x2=x2; this.y2=y2;
this.color = c;

}

public void drawShape(Graphics g)
{

g.drawRect(x1,y1,x2,y2);
}

}

Once the coordinates of the two points for drawing a rectangle and the color of
the shape have been established, a Rectangle object is created by invoking the
constructor and storing the data as instance variables.

On every occasion of drawing a shape on the screen, an object of the same shape
is instantiated and stored in a vector. Having a vector store every shape object
that is drawn can be used to your advantage. First, the repository of shapes can
be used to update the paint method, so that a full history of all the shapes
drawn is always maintained on the screen. And second, we now have a reposi-
tory of shapes that can be saved to a file.

Assuming that we have instantiated the following vector

private Vector store = new Vector();

the mouseReleased method used to draw a shape on the screen is amended to
instantiate a shape and store this shape in the vector in the code that follows. Apart
from the changes shown, this code is identical to that for the SketchPad class.

9.6 Painting the Screen 547

public void mouseReleased(MouseEvent event)
{

.

.

// draw appropriate shape and save shape
if (drawShape.equals("line"))
{

Line l = new Line(x1,y1,x2,y2,color);
l.drawShape(g);
store.addElement(l);

}
else if (drawShape.equals("square"))
{

Square s = new
Square(upperLeftX,upperLeftY,width,height,color);
s.drawShape(g);
store.addElement(s);

}
else if (drawShape.equals("rectangle"))
{

Rectangle r =
new Rectangle(upperLeftX,upperLeftY,width,height,color);

r.drawShape(g);
store.addElement(r);

}

.

.

}

Now that we have created a vector of shapes that grows in size every time a new
shape is drawn on the screen, we can use this vector to update the paint
method as follows. Notice that the code makes particular use of polymorphism
for the method drawShape.

public void paint(Graphics g)
{

for (int index=0; index != store.size(); index++)
{

Shape shape = (Shape)store.elementAt(index);
g.setColor(shape.color);

shape.drawShape(g);
}

}

548 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

Remember the window manager automatically invokes the paint method,
so you do not need to invoke it directly from within the program. Simply over-
riding the paint method and including it in the SketchPad class is all that
needs to be done.

9.7 Printing Objects

Before you start printing an object you must first set up a “print job.” First
invoke the system dialog box that requests information about a print job. This is
performed by invoking the getPrintJob from the Toolkit class.

Toolkit toolkit = this.getToolkit();
PrintJob job = toolkit.getPrintJob(bigBrother,"",new Properties());

The Properties class is used to implement the system properties list, which
supports user customization by allowing programs to look up the value of
named resources. In this example we simply create a Properties object using
the default constructor of the Properties class.

A PrintJob object represents a single printing session or “job.” The
PrintJob class is abstract; therefore, it cannot be instantiated directly and
hence we need to invoke the getPrintJob method of the Toolkit class.

The PrintJob class contains a getGraphics method to allow for the cre-
ation of a graphics page.

Graphics page = job.getGraphics();

We next obtain the size of the page and center the output on the page.

Dimension size = this.getSize();
Dimension pageSize = job.getPageDimension();
page.translate((pageSize.width-size.width)/2,

(pageSize.height-size.height)/2);

Finally, we print the page, dispose of the page object, and end the print job.

this.print(page);
page.dispose();
job.end();

Using the changes developed in this and the previous two sections, we have
rewritten the SketchPad class as the DrawingPad class. The coding of the
DrawingPad class follows.

import java.awt.*;
import java.awt.event.*;

9.7 Printing Objects 549

import java.io.*;
import java.util.*;

public class DrawingPad extends Dialog implements ActionListener
{

private static int X_TOP_LH_CORNER = 5;
private static int Y_TOP_LH_CORNER = 25;
private static int SCREEN_TRIM_SIZE = 20;
private static int HEIGHT_OF_BAR = 30;

private int widthOfBox;
private int heightOfBox;
private Frame container;

// coordinate of upper-left hand corner of a rectangle
private int upperLeftX, upperLeftY;
// size of surrounding rectangle
private int width, height;
// coordinates of two selected points
private int x1,y1,x2,y2;
// vector for storing geometrical shapes
private Vector store = new Vector();

// chosen color and shape - initialized to default values
String drawColor = new String("black");
Color color = Color.black;
String drawShape = new String("line");

// contents of the popup menus stored in arrays
String[] colorNames = {"black","blue","cyan","gray","green",

"magenta","red","yellow"};
String[] shapeNames = {"line","square","rectangle",

"circle","ellipse"};
String[] optionNames = {"clear","save","load","print"};

PopupMenu menu;

// constructor
public DrawingPad(Frame parent, boolean mode)
{

super(parent,
" This is a DrawingPad .. right-click mouse for menu", mode);
container = parent;

int screenWidth = parent.getWidth();
int screenHeight = parent.getHeight();

550 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

// set location and size of dialog box
int xLocationOfBox = (int)(0.075f * screenWidth);
int yLocationOfBox = (int)(0.1f * screenHeight);
widthOfBox = (int)(0.4f * screenWidth);
heightOfBox = (int)(0.7f * screenHeight);

// draw dialog box
this.setLayout(null);
this.setBackground(Color.white);
this.setForeground(Color.blue);
this.setLocation(xLocationOfBox,yLocationOfBox);
this.setSize(widthOfBox,heightOfBox);

// initialize components
initializeMenuComponents();

// set up remaining listeners
addMouseListener(new HandleMouseEvents());
addWindowListener(new CloseDrawingPad());

}

// instance method
public void showDrawingPad()
{

this.setVisible(true);
}

// helper methods
private void initializeMenuComponents()
{

// instantiate main popup menu
menu = new PopupMenu();

// to the main menu
PopupMenu colors = new PopupMenu("colors");
menu.add(colors);
PopupMenu shapes = new PopupMenu("shapes");
menu.add(shapes);
PopupMenu options = new PopupMenu("options");
menu.add(options);

for (int index=0; index != colorNames.length; index++)
{

MenuItem mi = new MenuItem(colorNames[index]);
mi.setActionCommand(colorNames[index]);
mi.addActionListener(this);

9.7 Printing Objects 551

colors.add(mi);
}

for (int index=0; index != shapeNames.length; index++)
{

MenuItem mi = new MenuItem(shapeNames[index]);
mi.setActionCommand(shapeNames[index]);
mi.addActionListener(this);
shapes.add(mi);

}

for (int index=0; index != optionNames.length; index++)
{

MenuItem mi = new MenuItem(optionNames[index]);
mi.setActionCommand(optionNames[index]);
mi.addActionListener(this);
options.add(mi);

}

this.add(menu);
}

// method to change color of graphic to correspond
// with chosen menu item
protected void selectColor(Graphics g)
{

for (int index=0; index != colorNames.length; index++)
{

if (drawColor.equals(colorNames[index]))
{

switch (index)
{

case 0: color=Color.black;
g.setColor(color);break;

case 1: color=Color.blue;
g.setColor(color);break;

case 2: color=Color.cyan;
g.setColor(color);break;

case 3: color=Color.gray;
g.setColor(color);break;

case 4: color=Color.green;
g.setColor(color);break;

case 5: color=Color.magenta;
g.setColor(color);break;

case 6: color=Color.red;

552 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

g.setColor(color);break;
case 7: color=Color.yellow;

g.setColor(color);
}

}
}

}

public void actionPerformed(ActionEvent event)
// method to detect which item is chosen from a menu
{

Object source = event.getActionCommand();

// check for color chosen
for (int index=0; index != colorNames.length; index++)

if (source.equals(colorNames[index]))
{

drawColor =colorNames[index];
return;

}

// check for shape chosen
for (int index=0; index != shapeNames.length; index++)

if (source.equals(shapeNames[index]))
{

drawShape = shapeNames[index];
return;

}

// check for clear
if (source.equals("clear"))
{

// clear contents of vector for storing shapes
store.removeAllElements();
repaint();
return;

}

// check for save
if (source.equals("save"))
{

FileDialog file = new
FileDialog(container,"",FileDialog.SAVE);
file.show();

9.7 Printing Objects 553

String filename = file.getFile();
if (filename != null)
{

try
{

FileOutputStream fos = new
FileOutputStream(filename);
ObjectOutputStream out = new
ObjectOutputStream(fos);
out.writeObject(store);
out.flush();
out.close();

}
catch (IOException e){}

}

return;
}

// check for load
if (source.equals("load"))
{

FileDialog file = new
FileDialog(container,"",FileDialog.LOAD);
file.show();

String filename = file.getFile();

if (filename != null)
{

try
{

FileInputStream fis = new
FileInputStream(filename);
ObjectInputStream in = new
ObjectInputStream(fis);

Vector newStore = (Vector)in.readObject();
in.close();
store = newStore;
repaint();

}
catch (Exception e){}

}

554 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

return;
}

// check for print
if (source.equals("print"))
{

// get a print job object
Toolkit toolkit = this.getToolkit();
PrintJob job = toolkit.getPrintJob(container,"",

new Properties());

// check if the user clicked Cancel in the print dialog
if (job == null) return;

// get a Graphics object for the first page of output
Graphics page = job.getGraphics();

// check the size of the drawing and the page
Dimension size = this.getSize();
Dimension pageSize = job.getPageDimension();

// center the output on the page
page.translate((pageSize.width-size.width)/2,

(pageSize.height-size.height)/2);

// print the drawing
this.print(page);

// clean up
page.dispose();
job.end();

return;
}

}

public void paint(Graphics g)
{

for (int index=0; index != store.size(); index++)
{

Shape shape = (Shape)store.elementAt(index);
g.setColor(shape.color);

shape.drawShape(g);
}

}

9.7 Printing Objects 555

public void processMouseEvent(MouseEvent event)
{

if (event.isPopupTrigger())
menu.show(this,event.getX(), event.getY());

else
super.processMouseEvent(event);

}

private class HandleMouseEvents extends MouseAdapter
{

// capture initial coordinates of mouse
public void mousePressed(MouseEvent event)
{

upperLeftX=0; upperLeftY=0; width=0; height=0;

x1=event.getX();
y1=event.getY();

}

// draw the appropriate shape when mouse button released;
// shape will be drawn between the coordinates (x1,y1) and
// (x2,y2)
public void mouseReleased(MouseEvent event)
{

Graphics g = getGraphics();

selectColor(g);
x2=event.getX();
y2=event.getY();

upperLeftX = Math.min(x1,x2);
upperLeftY = Math.min(y1,y2);
width = Math.abs(x1-x2);
height = Math.abs(y1-y2);

// draw appropriate shape and save shape
if (drawShape.equals("line"))
{

Line l = new Line(x1,y1,x2,y2,color);
l.drawShape(g);
store.addElement(l);

}
else if (drawShape.equals("square"))
{

Square s = new
Square(upperLeftX,upperLeftY,width,height,color);

556 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

s.drawShape(g);
store.addElement(s);

}
else if (drawShape.equals("rectangle"))
{

Rectangle r = new Rectangle(upperLeftX,upperLeftY,
width,height,color);

r.drawShape(g);
store.addElement(r);

}
else if (drawShape.equals("circle"))
{

Circle c = new Circle(upperLeftX,upperLeftY,
width,height,color);

c.drawShape(g);
store.addElement(c);

}
else if (drawShape.equals("ellipse"))
{

Ellipse e = new Ellipse(upperLeftX,upperLeftY,
width,height,color);

e.drawShape(g);
store.addElement(e);

}
}

}

private class CloseDrawingPad extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

DrawingPad.this.dispose();
}

}
}

Program Example_7 is used to test the methods of the DrawingPad class.

class Example_7
{

public static void main(String[] args)
{

WindowPane screen = new WindowPane();
screen.showWindowPane();

9.7 Printing Objects 557

DrawingPad geoShapes = new DrawingPad(screen, false);
geoShapes.showDrawingPad();

}
}

A screen shot of the running program follows.

558 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

S U M M A R Y

■ A Vector structure is similar to a one-dimensional array, with the exception that
it is truly dynamic since it will grow with the amount of data that is being added
to it.

■ The contents of a vector may be copied into a one-dimensional array.

■ The vector class contains many instance methods that permit information to
be obtained about the vector and the data stored in the vector.

■ A Graphics class is available for drawing shapes. To create an object of type
Graphics it is necessary to call the method getGraphics().

■ The Graphics class contains methods to draw a variety of shapes that
include a straight line, rectangle, ellipse, and polygon.

■ Mouse events have two listener interfaces—(1) MouseListener to listen for
mouse button activity such as pressed, clicked, and released and (2)
MouseMotionListener to listen for the mouse being dragged or moved.

■ The position of the mouse can be obtained from the methods getX and getY

in the MouseEvent class.

■ A window manager automatically paints a window when an event such as
resizing the window takes place. Never call the paint method directly in a
program. Either use the repaint method or just override the paint method in
the program and let the window manager call it automatically.

■ Objects that implement the Serializable interface may be stored in serial
files.

■ Objects are written to a serial file using the writeObject method from the
ObjectOutput class. They are read from a serial file using the readObject
method from the ObjectInput class. Both classes are found in the java.io
package.

■ The PrintJob class from the awt contains methods that will permit details of
objects to be printed on a page.

Review Questions
1. How does a vector differ from an array?

2. Distinguish between the instance methods size and capacity in the class Vector.

Exercises 559

3. What is the fundamental error in the following statement?

Graphics g = new Graphics();

4. Code a Graphics method to draw a straight line between the points [50,50] and
[250,250].

5. Repeat Question 4 to draw a rectangle between the stated points.

6. Code a Graphics method to draw the string "HELLO WORLD" from the coordinates
[100,50].

7. Code a Graphics method to draw a rectangle, given the coordinates of the bottom
right-hand corner as (x1,y1) and the coordinates of the top left-hand corner as (x2,y2).

8. What is the purpose of the paint method?

9. How do you invoke the paint method?

10. What is the difference between a mouse being dragged and a mouse being moved?

11. How can you obtain the values of mouse coordinates?

12. What is the MouseMotionAdapter class?

13. What two methods must be implemented in the MouseMotionListener interface?

14. Use skeletal code to explain how a MouseMotionAdapter class can be used to imple-
ment the event of a mouse being moved.

15. What is a pop-up menu and what triggers it?

16. In the MouseEvent class, what method will detect whether a mouse event was a trigger
event?

17. What must a class implement for its objects to be written to a serial file?

18. List, in order, the operations for storing objects in a serializable file.

19. List, in order, the operations for retrieving objects from a serializable file.

20. What is a PrintJob object?

Exercises
21. Using the Java documentation for the class Vector, describe the functions of the fol-

lowing methods.

(a) public final boolean contains(Object elem);

(b) public final synchronized void copyInto(Object[] anArray);

(c) public final boolean isEmpty();

(d) public final int lastIndexOf(Object elem);

560 Chapter 9 Vectors, Serialization, and the java.awt Graphics Class

22. Desk check the following program segment; explain the meaning of the statements, and
draw the contents of the vector dataStore after the execution of each statement.

Vector dataStore = new Vector(1);
dataStore.addElement("Sybil");
dataStore.addElement("Basil");
dataStore.addElement("Polly");

In Questions 23 and 24, you should write Java code to do the following.

23. Set up three text fields labeled Red, Green, and Blue. Input numbers in the range 0—-
255 in each box. Display a square area of the screen that represents the RGB color. Read
your Java documentation to find a suitable method in the class Color that computes
RGB color.

24. Rotate a compass needle on the screen about a fixed point in response to the mouse
being moved around the screen.

Programming Problems
25. Devise a system for maintaining a file of subscribers to a telephone directory. Pay partic-

ular attention to always entering your data into a vector so that it remains in ascending
order of the surname of the subscriber. Use a full graphical interface in your system.

In Questions 26 to 30, remember with nonevent-driven graphical output to override the paint
method for displaying the graphical information.

26. Write a program to plot the path of a small circle moving around the circumference of a
larger circle.

27. Use the polar equation

where

and

Write a program to plot graphs of the equation for e = 0.5, 1, and 2. Select a value for a so
that the graphs are large enough to fill the screen. Hint: Try values of a between 20 and
100.

28. An analysis of examination results at a school gave the following distribution of grades
for all subjects taken in one year.

x r y r= ⋅ = ⋅sin cosθ θ and .

0 2≤ ≤θ π

r a e= +()1 .cosθ

Programming Problems 561

Grade %

A 10

B 25

C 45

D 20

Write a program to represent the distribution of each grade in a pie chart, where each
slice of pie is drawn in a different color.

29. The monthly sales figures (units sold) for a computer manufacturing company are as fol-
lows.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

20 25 37 27 19 25 34 40 50 60 55 42

Write a program to plot a histogram of the sales.

30. Return to your answer to Question 48 in Chapter 6. Replace the textual output with a
graphical output that plots the movement of the airplanes on their various courses.

This page intentionally left blank

C H A P T E R 10

Objects Working
Together
Classes on their own have very limited use. Generally, systems
are built from many cooperating classes, where objects work together
to form the functionality of a complete system.

This chapter brings your knowledge of object-oriented programming to a level
where you can start to build software systems that comprise many related
classes. By the end of the chapter you will have gained knowledge in the follow-
ing areas.

■ The creation of programmer-defined packages containing classes that are
related through a common theme.

■ A technique using CRC cards for discovering classes, methods, and relation-
ships with other classes.

■ The concept of a class being formed by the sum of its associated component
classes.

■ An understanding of “whole—-part” relationships between classes.

■ Further UML notation for the development and documentation of software.

■ Panel and pull-down menu classes from the java.awt package.

■ The development of a small management system.

563

564 Chapter 10 Objects Working Together

10.1 Packages

Now that we have created several useful graphical user interface classes in
Chapters 8 and 9 (such as CheckBoxes, DataInputBox, ScrollableList,
RadioButtons, WritingPad, and WindowPane), it would be helpful to be able
to use these classes in other chapters of the book without needing to copy the
class files to the subdirectories in which they are to be used. In other words, we
need a mechanism for creating class files that can be stored in only one subdi-
rectory and yet used by Java programs stored in any subdirectory on your com-
puter, as was done with the avi package used throughout this book.

You are already familiar with importing some of Java’s standard API pack-
ages into a program, for example:

import java.io.*;
import java.util.*;
import java.awt.*;
import java.awt.event.*;

and using the classes defined in the respective packages. Java also permits the
inclusion of programmer-defined packages, so you can define a package con-
taining the implementation of your own classes.

Just as the authors created the avi package, you can create a package for
holding the components developed in the previous two chapters. The classes
created in Chapters 8 and 9 were in the context of a graphical user interface
(GUI); therefore, it would be appropriate to create a package called gui to con-
tain the classes from those chapters that are itemized above.

To include the implementation of these classes as part of the package gui,
we need to use a package statement at the beginning of each class file. The
package statement must appear as the first noncomment, nonblank line in a
Java source code file. For example, the class WindowPane would contain the
package statement at the beginning of the source file, as follows.

package gui;

import java.awt.*;
import java.awt.event.*;

public class WindowPane extends Frame
{

// size of window
private static int width;
private static int height;

.

.

10.1 Packages 565

Figure 10.1 The contents of the gui subdirectory

Java places each package in its own subdirectory, where the name of the subdi-
rectory is the same as the package name. The modified source file
WindowPane.java must be moved to the subdirectory gui that has already
been created.

The modified source file is then compiled using the javac command in the
normal way. Figure 10.1 illustrates the contents of the gui subdirectory. Six of
the class files developed in Chapters 8 and 9 have been modified to include the
package gui; statement at the beginning of each file. The files were then
moved into the gui subdirectory and separately compiled. Notice that any
defined inner classes, such as the CloseDialogueWindow class, are translated
into separate .class files by the compiler. The names of these .class files
include the name of the outer class, followed by a $, followed by the name of the
inner class.

Since Java is designed to be independent from any one environment, a
CLASSPATH environmental variable is used to determine where the Java compiler
is to start looking for programmer-defined classes. The CLASSPATH entry asso-
ciated with the avi package used throughout this book was set to CLASS-
PATH=.;c:\ in the autoexec.bat file.

The interpretation of this CLASSPATH entry follows. The pathways are sepa-
rated by the semicolon, and hence there are two pathways the computer should
use when searching for the named packages. The first pathway is signified by
the use of a period (.) that implies the current directory. The computer first
searches all subdirectories of the current subdirectory to find the subdirectory of
the named package.

The second pathway is signified by c:\ which is the root directory of the C
drive. The computer will search all the subdirectories of the root directory to
find the subdirectory of the named package.

566 Chapter 10 Objects Working Together

The setting of the CLASSPATH environmental variable will differ in a Windows environment
and a UNIX environment; consult the appropriate manual for the UNIX system you are

using.

!

A subdirectory gui is created at the same level as the subdirectory avi; in
other words, both subdirectories are at the first level down the tree from the root
directory on drive C; it is not necessary to change the settings of the CLASSPATH
variable in the autoexec.bat file from the original setting you created in the
Introduction at the beginning of the book.

The first program in this chapter uses the classes ScrollableList,
WindowPane, and WritingPad that now form part of the gui package. The
program invites a user to select from a scrollable list any number of classical
musicians; when the selection is complete, the names of those musicians chosen
are displayed on the WritingPad object. Remember: The subdirectory contain-
ing class Example_1 does not contain any of the classes used in the main
method. All these classes are available in the gui package, and hence you need
to use import gui.* at the beginning of the program.

import gui.*;

public class Example_1
{

public static void main(String[] args)
{

String[] names =
{"Chopin", "Mozart","Bach","Debussy","Bruch","Tchaikovsky",
"Schubert","Elgar","Britten","Beethoven","Holst","Smetana",
"Handel","Prokofiev","Rossini","Brahms","Gershwin","Dvorak"};

WindowPane screen = new WindowPane();
screen.showWindowPane();
WritingPad notes = new WritingPad(screen);
notes.showWritingPad();
ScrollableList inputNames = new
ScrollableList(screen, "Classical musicians ..", names);
inputNames.showList();

boolean[] chosenFew = new boolean[names.length];
chosenFew = inputNames.getSelectedItems();

notes.write("\n\nList of chosen classical musicians\n\n");

10.1 Packages 567

for (int index=0; index != chosenFew.length; index++)
{

if (chosenFew[index])
notes.write(names[index]+"\n");

}
}

}

Two screen shots from the running program follow:

Instead of using the * wildcard in the statement import gui.*; you can list
each of the specific classes that are being imported. Program Example_1 could
be modified to:

import gui.WindowPane;
import gui.WritingPad;
import gui.ScrollableList;

568 Chapter 10 Objects Working Together

gui

+DataInputBox

+CheckBoxes

+RadioButtons

+ScrollableList

+WritingPad

+WindowPane

Figure 10.2 UML representation of the package gui

This style of coding has the advantage that you see exactly what classes you are
importing from the package and, therefore, you have documented the depend-
encies the current class has on other classes. For example, class Example_1 is
dependent upon the classes WindowPane, WritingPad, and ScrollableList.

You may wonder about the outcome of importing several packages that con-
tain classes that have the same name. One solution to the problem is to invent
unique names for the classes in programmer-defined classes.

Alternatively, if you find there is a clash between two class names from dif-
ferent packages, then simply qualify the names with the name of the package.
For example, the Window class occurs in both the java.awt package and the avi
package. In coding the FilmStrip class of the avi package we used the Window
class of the java.awt package. The clash of names was resolved as follows:

package avi; // the avi package already contains a Window class
import java.awt.*; // the java.awt package also contains a Window class
.

public class FilmStrip extends java.awt.Window
{

.

.

The FilmStrip class needed to use the methods of the java.awt.Window
class and not the methods of the avi.Window class, and so we included the
qualification of which Window class to use.

Figure 10.2 indicates the names of the classes within the gui package that
are available for public use. This figure uses the UML notation for describing a
package. The package name is contained within a tab drawn on the top left-
hand side of a larger rectangle, thus representing a folder icon. Each class is

10.1 Packages 569

gui

lang

java

event

awt

Figure 10.3 UML diagram showing dependencies between packages

labeled within an inner rectangle. The + sign in front of the name of a class indi-
cates that the class has been written for public use.

A dependency between two packages exists if any dependency exists between
any two classes in the packages. If you inspect the source listings of the classes of
the gui package, you will notice that they all import from the java.awt pack-
age and the java.awt.event package. Additionally, all classes import from the
java.lang package by default. These dependencies can be shown by the UML
diagram in Figure 10.3.

Notice that, because the java.awt.event package is stored as a subdirec-
tory of the java.awt package, the event package is nested within the awt
package.

If there are any future changes to any of the classes in the awt and event
packages, both of which are used by classes in the gui package, then the
changes would have an effect on the classes in the gui package. Such changes to
future versions of Java cannot be ruled out; however, such changes to awt and
event at this stage in the development of the language are thought to be
unlikely.

The use of packages is vital in the development of large projects. The group-
ing together of related classes in a single package improves the development and
management of a project and helps create a reusable library of components.

570 Chapter 10 Objects Working Together

(1) Invent your own class called SimpleMath that contains methods to perform
simple arithmetic on double-precision numbers.

(2) Create a package named arithmetic, and include the SimpleMath class
in this package.

(3) Adjust your CLASSPATH variable accordingly.

(4) Compile the SimpleMath class.

(5) Write a separate program, stored in a different subdirectory from your pack-
age, that imports arithmetic.*, and test the invocation of the methods of
your SimpleMath class.

NOW DO THIS

In summary, the use of packages provides you with the following benefits.

■ The ability to use any of the classes in a package, in any classes in other
directories on your computer.

■ A means of resolving name clashes between classes. For example, both the
java.awt and avi packages contain a Window class.

■ Improved management of software.

10.2 Associations

Imagine that we are required to write a program to create a numeric calculator
as a graphical object. Figure 10.4 illustrates such a calculator.

The calculator is built from several components. From Figure 10.4 it is evi-
dent that the calculator contains a numeric key pad for input of the digits of a
number, a negative sign, a decimal point, and the option to cancel a number; a
function pad to select an operator and hence perform a calculation on a pair of
numbers; and a display to show the number as it is entered into the calculator, or
to show the result of a calculation.

In writing a program to create a calculator as a graphical object, we will need
to design classes that represent a Calculator as the container class to allow
objects of type NumericKeyPad, FunctionPad, and Display to be held by the
container.

Let’s consider the methods required for each class. The Calculator class
needs only to show itself on the screen; hence a method showCalculator is
required. Since we need to be able to read data from and write data to the dis-
play, we need to include methods to read and write in the Display class. The
FunctionPad class contains a method to calculate the value for whatever two

10.2 Associations 571

Figure 10.4 A numeric calculator

numbers have been entered into the calculator and to display the result. Finally,
the NumericKeyPad class is required to show the digits of a number on the dis-
play when the appropriate numeric keys are pressed.

Until now we have tended to develop classes that have been independent of
each other. As we develop more complex programs it is necessary for objects
from one class to work together with objects of another class. An association is a
structural relationship that specifies objects from one class that are connected to
objects of another class. Associations form the “glue” that holds objects from
different classes together to build a computer program.

The associations of the calculator, the numeric key pad, the function pad, and
the display are depicted by the UML class diagram illustrated in Figure 10.5.

An association can be given a name to describe the relationship between two
objects. The name contains a direction triangle that points in the direction you
want to read. For example, from Figure 10.5, a Display object is part of a
Calculator object, a FunctionPad object is part of a Calculator object, and
a NumericKeyPad is part of a Calculator object.

In an association it is important to state how many objects may be connected
across the instance of an association. The number of objects in an association is
known as the multiplicity of an association and is written as an expression that
evaluates to a range of values. In Figure 10.5, the use of the expression contain-
ing just 1 represents a single Display object, a single FunctionPad object, and
a single Display object. Further examples using multiplicity will be given later
in this chapter.

The Calculator class will extend the Dialog class in order to create a
graphical component that can be moved about any parent container object. This

572 Chapter 10 Objects Working Together

PartOf

PartOf
PartO

f

1

1

1

Display

+Display
+write
+read

FunctionPad

+NumericKeyPad

NumericKeyPad

+FunctionPad
-calculate

Calculator

+Calculator
+showCalculator

Figure 10.5 UML class diagram showing the associations between the classes

technique is the same as that practiced for all of the graphical objects imple-
mented in Chapter 9. The location, size, and color of the Calculator container
is also established.

Having created the Calculator container, we can easily instantiate objects
for the Display, NumericKeyPad, and FunctionPad and set the location and
size of these objects in the Calculator container. The skeletal code that
describes this operation follows.

public class Calculator extends Dialog
{

.

public Calculator(Frame parent)
{

.

.

// set location and size of calculator

// add display to calculator
Display display = new Display();

10.2 Associations 573

display.setLocation(1,25);
display.setSize(150,30);
add(display);

// add numeric keypad to calculator
NumericKeyPad keys = new NumericKeyPad(display);
keys.setLocation(15,65);
keys.setSize(90,150);
add(keys);

// add function pad to calculator
FunctionPad functions = new FunctionPad(display);
functions.setLocation(110,65);
functions.setSize(30,150);
add(functions);

}

.

.

Before we continue with the coding of the three component classes, we need to
introduce a new container class Panel from the java.awt package.

A Panel class is a container that does not create a separate window of its
own but is itself contained within a container. Panel is suitable for holding por-
tions of a larger graphical user interface within a parent container. The actual
panel is invisible unless you set the background color of the panel. The panel
serves as a convenient container, allowing subsets of components to be arranged
and placed within a larger container.

The Display, FunctionPad, and NumericKeyPad classes should all extend
the Panel class in order to place their respective components into a container
that is a Panel. The coding for the Display class follows; this is the shortest
and simplest class to understand.

import java.awt.*;

public class Display extends Panel
{

TextField data;

/**
The Display class enables a text field to be added to a panel.
*/
public Display()
{

super();
setLayout(new FlowLayout(FlowLayout.CENTER));

574 Chapter 10 Objects Working Together

data = new TextField("",16);
this.add(data);

}

/**
Writes a string to the display.
@param value of the string to be written.
*/
public void write(String datum)
{

data.setText(datum);
}

/**
Reads the datum stored in the display.
@return The string stored in the display.
*/
public String read()
{

return data.getText();
}

}

In the Display class, a text field is set up within the panel; a string can be writ-
ten to the text field, and the contents of the text field can be read as a string of
information. If you examine the skeletal coding of the Calculator class, you
will notice how simple it is to add a Display component to the class:

// add display to calculator
Display display = new Display();
display.setLocation(1,25);
display.setSize(150,30);
add(display);

This is a matter of instantiating a Display object, which of course comes with
its own panel, setting the location and size of the Display object, then adding
the object to the calculator container.

The NumericKeyPad class is dependent upon the Display class. The com-
plete listing of the NumericKeyPad source code follows.

Note that the constructor uses a grid layout to arrange the buttons, with the
buttons inserted into the grid from left to right, top to bottom.

An actionPerformed method handles the event of a button being pressed.
Whenever either a numeric key, negative sign of the number key, or decimal
point key on the pad is pressed, the value associated with the key is written as
either a digit, minus sign, or period on the display, respectively. The display must
first be read, its string contents are then concatenated with the character associ-

10.2 Associations 575

ated with the key being pressed, and the new string is then written back to the
display. If the key to cancel the number being displayed is pressed, the display is
cleared by writing an empty string to it.

import java.awt.*;
import java.awt.event.*;

public class NumericKeyPad extends Panel implements ActionListener
{

Button[] button = new Button[15];
Display datum;

/**
The NumericKeyPad class enables a panel containing numeric keys, a
minus sign, decimal point and clear keys to be created.
@param display is the name of the object that shows the number
chosen.
*/
public NumericKeyPad(Display display)
{

super();
datum = display;

setLayout(new GridLayout(5,3));
Font font = new Font("SansSerif",Font.BOLD,16);
setFont(font);

// create buttons 7 .. 9
for (int index = 7; index < 10; index++)
{

button[index] = new Button(String.valueOf(index));
button[index].addActionListener(this);
button[index].setForeground(Color.black);
button[index].setBackground(Color.cyan);
this.add(button[index]);

}

// create buttons 4 .. 6
for (int index = 4; index < 7; index++)
{

button[index] = new Button(String.valueOf(index));
button[index].addActionListener(this);
button[index].setForeground(Color.black);
button[index].setBackground(Color.cyan);
this.add(button[index]);

}

576 Chapter 10 Objects Working Together

// create buttons 1 .. 3
for (int index = 1; index < 4; index++)
{

button[index] = new Button(String.valueOf(index));
button[index].addActionListener(this);
button[index].setForeground(Color.black);
button[index].setBackground(Color.cyan);
this.add(button[index]);

}

// create numeric buttons 0
button[0] = new Button("0");
button[0].addActionListener(this);
button[0].setForeground(Color.black);
button[0].setBackground(Color.cyan);
this.add(button[0]);

// create two blank buttons
for (int index = 10; index < 12; index++)
{

button[index] = new Button("");
button[index].setBackground(Color.lightGray);
this.add(button[index]);

}

// create bottom row of special buttons
button[12] = new Button("-");
button[13] = new Button("C");
button[14] = new Button(".");

for (int index = 12; index < 15; index++)
{

button[index].setForeground(Color.black);
button[index].setBackground(Color.lightGray);
button[index].addActionListener(this);
this.add(button[index]);

}
}

public void actionPerformed(ActionEvent event)
{

String buttonPressed;

// process numeric buttons
for (int index=0; index < 10; index++)

10.2 Associations 577

{
buttonPressed = String.valueOf(index);

if (event.getActionCommand().equals(buttonPressed))
{

datum.write(datum.read()+buttonPressed);
return;

}
}

// process buttons on bottom row
if (event.getActionCommand().equals("-"))
{

datum.write(datum.read()+"-");
}
else if (event.getActionCommand().equals("C"))
{

datum.write("");
}
else if (event.getActionCommand().equals("."))
{

datum.write(datum.read()+".");
}

}
}

Finally, the FunctionPad class is also dependent upon the Display class.
When one of the arithmetic function keys is pressed, the value of the operator is
stored and the contents of the display is read, converted from a string to a real
number, and stored as the first operand for later use.

When the equals key is pressed, the contents of the display are read and con-
verted from a string to a real number and stored as the second operand. The
operator that was previously stored is then used to determine the operation to
perform on the two operands. The calculation is computed, and the result is
written to the display.

The complete listing of the FunctionPad source code follows. Note that the
actionPerformed method uses the private method calculator to perform the
arithmetic operations.

import java.awt.*;
import java.awt.event.*;

public class FunctionPad extends Panel implements ActionListener
{

private char[] functions = {'+','-','x','/','='};
private Button[] button;
private Display datum;

578 Chapter 10 Objects Working Together

private double operand1, operand2;
private char arithmeticOperator;

/**
The FunctionPad class enables a panel containing function keys to be
created.
@param display is the name of the object that shows the result of the
function chosen.
*/

public FunctionPad(Display display)
{

super();
datum = display;
button = new Button[functions.length];

setLayout(new GridLayout(functions.length,1));
Font font = new Font("Monospaced",Font.BOLD,24);
setFont(font);

for (int index = 0; index != functions.length; index++)
{

button[index] = new
Button(String.valueOf(functions[index]));
button[index].addActionListener(this);
button[index].setForeground(Color.red);
button[index].setBackground(Color.lightGray);
this.add(button[index]);

}
}

public void actionPerformed(ActionEvent event)
{

// get operator of key pressed
char operator = event.getActionCommand().charAt(0);

switch (operator)
{

case '+':
case '-':
case 'x':
case '/': try

{
operand1 = Double.valueOf
(datum.read()).doubleValue();

}

10.2 Associations 579

catch (NumberFormatException nfe)
{

datum.write(" not a number");
return;

}

arithmeticOperator = operator;
datum.write("");
return;

case '=': try
{

operand2 = Double.valueOf
(datum.read()).doubleValue();

}
catch (NumberFormatException nfe)
{

datum.write(" not a number");
return;

}

double result = calculate(operand1, operand2);
datum.write(String.valueOf(result));

}
}

/**
Calculate and return the result of the function being applied to the
two operands.
@param operand1 is the first number to be keyed into the calculator;
@param operand2 is the second number to be keyed into the calculator;
@return Result of the calculation on operand1 and operand2.
*/
private double calculate(double operand1, double operand2)
{

double answer = 0.0;

switch (arithmeticOperator)
{

case '+': answer = operand1+operand2; break;
case '-': answer = operand1-operand2; break;
case 'x': answer = operand1*operand2; break;
case '/': answer = operand1/operand2;

}

return answer;
}

}

580 Chapter 10 Objects Working Together

Finally, a full source listing of the Calculator class follows. It consists prima-
rily of setting up the calculator container and adding the interrelated graphical
objects to it. Of course, it also includes methods to show the calculator and to
dispose of it.

import java.awt.*;
import java.awt.event.*;

public class Calculator extends Dialog
{

/**
The Calculator class enables a small pocket numeric calculator to be
created and displayed on the screen.
@param parent is the name of the container on which to display the
calculator.
*/
public Calculator(Frame parent)
{

super(parent,"Calculator ..",true);
addWindowListener(new CloseCalculator());

Toolkit tools = parent.getToolkit();
Dimension size = tools.getScreenSize();
int screenWidth = size.width;
int screenHeight = size.height;

// set location and size of calculator
int xLocationOfCalc = (int)(0.7f * screenWidth);
int yLocationOfCalc = (int)(0.2f * screenHeight);
int widthOfCalc = (int)(0.15f * screenWidth);
int depthOfCalc = (int)(0.3f * screenHeight);

// draw calculator
setLayout(null);
setLocation(xLocationOfCalc,yLocationOfCalc);
setSize(widthOfCalc,depthOfCalc);
setForeground(Color.blue);
setBackground(Color.lightGray);

// add display
Display display = new Display();
display.setLocation(1,25);
display.setSize(150,30);
add(display);

10.2 Associations 581

// add numeric keypad
NumericKeyPad keys = new NumericKeyPad(display);
keys.setLocation(15,65);
keys.setSize(90,150);
add(keys);

// add function pad
FunctionPad functions = new FunctionPad(display);
functions.setLocation(110,65);
functions.setSize(30,150);
add(functions);

}

/**
Show the calculator on the screen
*/
public void showCalculator()
{

this.setVisible(true);
}

private class CloseCalculator extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

Calculator.this.dispose();
System.exit(0);

}
}

}

The program to test the Calculator class is trivial:

import gui.*;

public class Example_2
{

public static void main(String[] args)
{

WindowPane screen = new WindowPane();
screen.showWindowPane();
Calculator machine = new Calculator(screen);
machine.showCalculator();

}
}

582 Chapter 10 Objects Working Together

10.3 CRC Cards

So far the method used throughout the book to discover classes was to analyze
the text of the stated problem and use the nouns in the text to represent a num-
ber of candidate classes. The candidate classes were then examined further to
determine their suitability for the solution to the problem. The next stage was to
re-examine the text of the stated problem and use the verbs in the text to repre-
sent the possible methods. This approach works fine for small problems, but the
ability to find associations between the appropriate classes becomes more diffi-
cult as the complexity of the problems increases. An alternate method that
works well with more complex problems is to use Classes, Responsibilities, and
Collaborators (CRC) cards.

The CRC card technique is a means of discovering classes, responsibilities
(the methods of the class), and collaborators (those classes that are also needed
to fulfill the responsibilities, revealing the associations between classes when
designing an object-oriented system). Figure 10.6 illustrates the layout of a
CRC card.

Run program Example_2. A calculator similar to that shown in
Figure 10.4 should appear on a WindowPane.
NOW DO THIS

CRC cards are not part of the UML notation. They were first described by Beck and
Cunningham in 1989—see http://c2.com/doc/oopsla89/paper.html. Beck and

Cunningham used a small 6" � 4" index card to document the name of the class and list the
responsibilities of that class. Alongside each responsibility they wrote down whether any other
classes were also needed to permit the responsibility to be implemented.

For each class there was an index card, so it was possible to build up a pack of cards repre-
senting all the classes of the project. Cards could be grouped into classes that exhibited some
form of commonality and thus be implemented as a package. By inspecting the responsibilities on
each card and looking for repeated responsibilities or responsibilities that could be used in other
cards, the programmer could make decisions on which class would form a subclass of another.
CRC cards provide a good medium for project teams where decisions about the design of an
object-oriented system are forced to be made up-front in a nonrestrictive and informal group.

1i

Consider the following scenario. A college offers a number of degrees. Each
degree is composed of a number of topic modules (or courses depending upon
which part of the world you live in). Not all degrees are made up from the same
number of modules. Each degree has a unique name, and each module has a
unique name.

The grade for a module will be based on a weighted combination of an exam
mark and a coursework mark. The weight given to each of these grade compo-

http://c2.com/doc/oopsla89/paper.html

10.3 CRC Cards 583

nents can differ from one module to the next and is part of the defining charac-
teristics of a module. Marks are based on the standard scale of 100 points.
Module grade cutoffs are: A 85, B+ 70, B 55, C 40, F below 40.

For example, if a module uses a 60% weight for exams (and therefore a 40%
weight for coursework) and a student has received a mark of 80 for exams and a
mark of 90 for coursework, then the student’s total score is (0.6 * 80) + (0.4 * 90)
= 84 and receives a grade of B+.

We want to create a program system that will let us define, update, and
report on various students’ degrees of study. Obvious candidate classes are
Degree and Module. The Degree class would contain information about the
name of the degree and the modules that comprise the degree. In addition to
the constructor for the Degree class, we will want to create instance methods to
add individual modules to the degree, get the name of the degree, and get the
modules that the degree comprises. This information is documented on a CRC
card as shown in Figure 10.7. Notice that if we want to add a module to the
degree, then it is necessary to collaborate with the candidate class Module.

Class

Responsibilities Collaborators

Figure 10.6 The layout of an index card to represent a CRC card

Degree

Responsibilities Collaborators

Course

add module

get name of course

get course of modules

Module

-

-

-

Figure 10.7 CRC card for the Degree class

584 Chapter 10 Objects Working Together

Module

Responsibilities Collaborators

Module

get module name

get exam ratio

get coursework ratio

-

-

-

-

Figure 10.8 CRC card for the Module class

A Module class should contain the name of the module and information
about the assessment ratio between the weight of the examination mark and the
weight of the coursework mark. The ratio of the examination marks and the
coursework mark is used in computing the total mark for a module. In addition
to using the constructor for the Module class, we need to supply methods to get
the name of the module, the exam weight, and coursework weight assessment
ratios. This information is documented on the CRC card shown in Figure 10.8.

From the collaborators column of the Degree card in Figure 10.7 you can
see that there is an association between the Degree class and the Module class
shown in Figure 10.8.

Continuing the scenario: When a student registers for a college degree you
must store such information as the name of the student and the name of the
degree for which the student is registering. You must also be able to add the
results for the student for each of the modules in the registered degree. If
StudentProgram, representing a student’s program of study, can be regarded
as another candidate class, then in addition to its constructor, we might want
methods for four other actions—to get the name of the student, get the degree
on which the student is registered, add the results of an assessment for a module
to the class, and get the results of those modules that have been examined. This
information is documented on the CRC card shown in Figure 10.9.

Once again, if you look down the collaborators column of the card, you can
see that there are relationships between the class StudentProgram and the
classes Degree, Module, and ModuleResult. You may notice that the class
ModuleResult has not been mentioned before, and you should question what it
represents!

We do not have a class that represents the results for a particular module
studied. Such a class should store the module, the percentage exam mark, and
the percentage coursework mark. Ultimately, a module result will be stored as an
object in a vector in the class StudentProgram. The vector will eventually con-

10.3 CRC Cards 585

StudentProgram

Responsibilities Collaborators

StudentProgram

get student name

get course

add module result

-

get student result -

Degree

Degree

Module,ModuleResult

s

Figure 10.9 CRC card for the StudentProgram class

tain all the assessments of all the modules the student has studied on a degree.
You can argue that since the StudentProgram class contains a method to add
the module results to the student’s program, then this new class should be an
inner class of the StudentProgram class. If this were the case, there would be
no means of making this new class public so that it could be used by other
classes.

The ModuleResult class not only allows objects to be created and stored in
a vector, but also enables the retrieval of information from a student program. In
addition to the constructor for the class, the ModuleResults class contains
methods to get the name of the module, get the exam mark, get the coursework
mark, get the total mark, and get the grade based upon the total mark. This
information is documented on the CRC card shown in Figure 10.10.

ModuleResult

Responsibilities Collaborators

ModuleResult

get module name

get exam mark

get coursework mark

-

get total mark -

Module

-

-

get grade -

Figure 10.10 CRC card to represent the class ModuleResults

586 Chapter 10 Objects Working Together

A variation on CRC cards subdivides responsibilities into two
subsections: “responsibilities for knowing” and “responsibilities for doing.” The
“ .. for knowing” leads to the discovery of instance variables and the “ .. for
doing” leads to the methods.

(1) Repeat the work of Section 10.3 using the “responsibilities for knowing” and
establish the instance variables for each class.

NOW DO THIS

By inspecting the collaborators column of the ModuleResults class it is
clear that there is a relationship between the ModuleResults class and the
Module class.

The calculation of the total mark is not simply a matter of summing the
exam mark and the coursework mark since a weight is applied to both of these
components of assessment. For example, if the exam weight is 60% and the
coursework weight is 40%, then the total is calculated as 60% of the exam mark,
plus 40% of the coursework mark. If the ModuleResults class is to calculate
the total mark, then it requires the exam and coursework weightings for the
assessment. Methods to supply these values are found in the Module class.

Since both the Module and ModuleResults classes need to share methods,
it is reasonable for the ModuleResults class to have an instance variable of type
Module. That way, the ModuleResults class has access to the instance variables
of a module. It would be wrong to treat ModuleResults as a subclass of
Module, since the “is-a” relationship does not apply.

Once the relationships between the classes have been discovered, we can
move towards the next stage in the design by drawing the class diagrams and
showing the associations and dependencies. For each CRC card there will be
the representation of a class. The relationships between classes are taken from
the collaborators columns of the cards and drawn as either an association or a
dependency on the class diagram. The methods for each class are taken directly
from the responsibilities column of each card.

We will continue with this example in the next section.

10.4 Aggregation

Sometimes you will want to model a whole-part relationship in which one class
represents a larger thing (the whole) that consists of smaller things (the parts).
This kind of relationship is called an aggregation, which represents a has-a rela-
tionship (see Section 6.8), meaning that an object of the whole has objects of
the parts. In other words, aggregation is a method of recording that an object of
one class is part of an object of another class. Aggregation is a special kind of

10.4 Aggregation 587

A degree contains
many modules

Degree

StudentProgram ModuleResult

Module
1..* 1..*

Figure 10.11 A UML class-relationship diagram

association; it is specified by drawing an open diamond at the “whole” end on
the relationship diagram (see Figure 10.11).

In the scenario described in the previous section, there is an association
between two classes that form an aggregation. The aggregation is between the
Degree and Module classes. A degree (the whole) has-a number of modules
(the parts). The notation 1..* means that a degree is composed from at least 1
module. The * implies any number. In practice, a degree is normally composed
from at least, say, six modules, in which case the notation would change to 6..*.
A class-relationship diagram for the scenario is shown in Figure 10.11.

Note the symbol shown in Figure 10.11 as

This symbol may be used to add notes to a diagram and is used to append notes
to a UML diagram.

A detailed UML diagram showing the methods of each class of our example
and the relationships between each class is given in Figure 10.12.

The implementation of each class follows. Each class implements the seri-
alizable interface because, later in the development of the scenario, objects
can be written to or read from serializable files.

588 Chapter 10 Objects Working Together

Degree

-modules
-nameOfDegree

-moduleName
-examWeight

+Degree

+addModule

+getNameOfDegree

+getDegreeModules

+Module

+getModuleName

+getExamRatio

+getCourseworkRatio

Module

StudentProgram

-studentName
-degree
-studentRecord

-currentModule
-assessedModule
-examMark
-courseworkMark
-totalMark+StudentProgram

+getStudentName

+getDegree

+addModuleResult

+ModuleResult

+getModuleName

+getExamMark

+getCourseworkMark

+getTotalMark

+getGrade

ModuleResult

1..* 1..*

+getStudentResults

Figure 10.12 Detailed UML class diagram

import java.io.*;
import java.util.*;

public class Degree implements Serializable
{

private Vector modules;
private String nameOfDegree;

10.4 Aggregation 589

/**
The Degree class enables an object that represents
a college degree containing a number of pre-defined
modules.
@param name is the name of the degree
*/
public Degree(String name)
{

nameOfDegree = name;
modules = new Vector();

}

// instance methods
/**
Add a module to the degree.
@param module is the module to be added
*/
public void addModule(Module module)
{

modules.add(module);
}

/**
Returns the name of the degree.
@return name of the degree.
*/
public String getNameOfDegree()
{

return nameOfDegree;
}

/**
Returns a vector containing the names of the modules
that form the degree.
@return A vector containing the names of the degree modules.
*/
public Vector getDegreeModules()
{

return modules;
}

}

import java.io.*;

public class Module implements Serializable

590 Chapter 10 Objects Working Together

{
protected String moduleName;
protected int examWeight;

// default constructor
public Module(){}
/**
The Module class enables an object that represents a study
unit within a degree. A single degree consists of at least
one module.
@param name is the name of the module.
@param weight is the proportion of the assessment that is
examination based e.g. a weight of 60 implies that the assessment
is 60% examination 40% coursework.
*/
public Module(String name, int weight)
{

moduleName = name;
examWeight = weight;

}

// instance methods
/**
Returns the name of the module.
@return The name of the module.
*/
public String getModuleName()
{

return moduleName;
}

/**
Returns the proportion of the assessment that is examination.
@return An integer representing the percentage of the assessment
based upon the examination.
*/
public int getExamRatio()
{

return examWeight;
}

/**
Returns the proportion of the assessment that is coursework.
@return An integer representing the percentage of the assessment

10.4 Aggregation 591

based upon the coursework.
*/
public int getCourseworkRatio()
{

return 100-examWeight;
}

}

import java.io.*;

public class ModuleResult implements Serializable
{

private Module currentModule;
private String assessedModule;
private int examMark;
private int courseworkMark;
private int totalMark;

/**
The ModuleResult class enables an object that represents the
statistics of an assessment for a single module.
@param module is the Module being assessed.
@param exam is the percentage examination mark.
@param coursework is the percentage coursework mark.
*/
public ModuleResult(Module module, int exam, int coursework)
{

currentModule = module;
assessedModule = currentModule.getModuleName();
examMark = exam;
courseworkMark = coursework;
totalMark = (currentModule.getExamRatio() * examMark /100) +

(currentModule.getCourseworkRatio() *
courseworkMark / 100);

}

/**
Get name of module that was assessed.
@return The name of the module.
*/
public String getModuleName()
{

return assessedModule;
}

592 Chapter 10 Objects Working Together

/**
Get the percentage examination mark.
@return The percentage examination mark.
*/
public int getExamMark()
{

return examMark;
}

/**
Get the percentage coursework mark.
@return The percentage coursework mark.
*/
public int getCourseworkMark()
{

return courseworkMark;
}

/**
Get the total mark after the examination and coursework weightings
have been applied.
@return Total mark as a percentage.
*/
public int getTotalMark()
{

return totalMark;
}

/**
Compute the grade based upon the total mark.
@return The grade.
*/
public String getGrade()
{

if (totalMark >= 85) return "A";
else if (totalMark >= 70) return "B+";
else if (totalMark >= 55) return "B";
else if (totalMark >= 40) return "C";
else return "F";

}
}

import java.io.*;
import java.util.*;

10.4 Aggregation 593

public class StudentProgram implements Serializable
{

private String studentName;
private Degree degree;
private Vector studentRecord;

/**
The StudentProgram class enables an object that represents
the registration of a student on a degree. This object also
maintains a record of the student's progress by recording
details of the modules assessed.
@param name is the name of the student.
@param registeredOn is the degree the student has joined.
*/
public StudentProgram(String name, Degree registeredOn)
{

studentName = name;
degree = registeredOn;
studentRecord = new Vector();

}

// instance methods
/**
Gets the name of the student.
@return The name of the student.
*/
public String getStudentName()
{

return studentName;
}

/**
Gets the degree the student has registered on.
@return The degree the students has registered on.
*/
public Degree getDegree()
{

return degree;
}

/**
Add the result from a module to the student program.
@param module is the Module being assessed.
@param exam is the percentage mark for the examination.
@param coursework is the percentage mark for the coursework.

594 Chapter 10 Objects Working Together

*/
public void addModuleResult(Module module, int exam, int coursework)
{

ModuleResult result = new
ModuleResult(module, exam, coursework);
studentRecord.add(result);

}

/**
Get the results from every module on the degree.
@return A vector containing the result for each module taken.
*/
public Vector getStudentResults()
{

return studentRecord;
}

}
Program Example_3 is a program to test the methods of the four classes. Note
that it uses the gui package developed in the first two sections of this chapter.
The program is split into two class methods. In the first method,
createData(), the program creates two degrees—mathematics and comput-
ing. The mathematics degree contains the modules calculus, algebra, and
trigonometry, and the computing degree contains the modules programming,
architecture, data structures, expert systems, and networks.

A one-dimensional array is used to store two student programs. The first
student takes the mathematics degree and the second student takes the comput-
ing degree. The results of the assessments for both students are added to each
student’s program.

In the second method, displayResults(), the details of each student pro-
gram are output to the screen. A vector is created that contains all the modules
the student has studied. The details of the results are output for each module
studied.

import gui.*;
import java.util.*;

public class Example_3
{

static Degree mathematics, computing;
static Module calculus, algebra, trigonometry, programming,

architecture, dataStructures, expertSystems, networks;
static StudentProgram[] students = new StudentProgram[2];

static void createData()
{

// create degrees called Mathematics and Computing

10.4 Aggregation 595

mathematics = new Degree("Mathematics");
computing = new Degree("Computing");

// create modules
calculus = new Module("Calculus",70);
algebra = new Module("Algebra",50);
trigonometry = new Module("Trigonometry",100);
programming = new Module("Programming",50);
dataStructures = new Module("Data Structures",70);
architecture = new Module("Computer Architecture",100);
expertSystems = new Module("Expert Systems",70);
networks = new Module("Networks",100);

// add modules to the mathematics degree
mathematics.addModule(calculus);
mathematics.addModule(algebra);
mathematics.addModule(trigonometry);

// add modules to the computing degree
computing.addModule(programming);
computing.addModule(architecture);
computing.addModule(dataStructures);
computing.addModule(expertSystems);
computing.addModule(networks);

// create student records and store in an array
students[0] = new StudentProgram("Jane Morgan", mathematics);
students[1] = new StudentProgram("Barry Freeman", computing);

// add results to Jane's student record
students[0].addModuleResult(calculus,45,60);
students[0].addModuleResult(algebra,65,90);
students[0].addModuleResult(trigonometry,85,0);

// add results to Barry's student record
students[1].addModuleResult(programming,90,95);
students[1].addModuleResult(dataStructures,70,90);
students[1].addModuleResult(networks,65,0);

}

static void displayResults()
{

// print out details of program for each student
WindowPane screen = new WindowPane();
screen.showWindowPane();
WritingPad pad = new WritingPad(screen);

596 Chapter 10 Objects Working Together

pad.showWritingPad();

// for each student
for (int number=0; number != students.length; number++)
{

// write name of student and name of degree
pad.write("Name: "+students[number].getStudentName()+

" Degree: "+
students[number].getDegree().getNameOfDegree()+"\n");

// create a vector of the modules required by the degree
Vector namesOfModules =
students[number].getDegree().getDegreeModules();
int sizeOfVector = namesOfModules.size();

// display those modules that are required by the degree
pad.write("Modules to be studied on the degree\n");
for (int index=0; index != sizeOfVector; index++)
{

Module name =
(Module)namesOfModules.elementAt(index);
pad.write(" "+name.getModuleName()+" ["+

String.valueOf(name.getExamRatio())+":"+
String.valueOf(name.getCourseworkRatio())+"]\n");

}

// create a vector of the results of those modules
// already assessed
Vector resultsOfModules =
students[number].getStudentResults();
sizeOfVector = resultsOfModules.size();

// write the assessment details of the modules studied
pad.write("Assessment details to date\n");
for (int index=0; index != sizeOfVector; index++)
{

ModuleResult result =
(ModuleResult)resultsOfModules.elementAt(index);
pad.write(" "+

result.getModuleName()+" ex: "+
String.valueOf(result.getExamMark())+" cw: "+
String.valueOf(result.getCourseworkMark())+
" total: "+String.valueOf(result.getTotalMark())+
" grade: "+result.getGrade()+"\n");

10.4 Aggregation 597

}

pad.write("\n\n");
}

}

public static void main(String[] args)
{

createData();
displayResults();

}
}

A screen shot for the running program follows.

598 Chapter 10 Objects Working Together

10.5 Composition

In aggregation, groups of objects are used as components to make some larger
object; for example, a group of modules forms a degree. However, different per-
mutations of modules may be used to form different degrees; in other words, in
aggregation one object may own other objects but they may also have an inde-
pendent lifetime and other associations.

For example, a Mathematics degree may contain the modules Algebra,
Calculus and Logic; yet a Computing degree might also contain the module on
Logic, in addition to other modules on say, Programming, Data Structures, and
Computer Architecture. In our aggregations, not only does the module Logic
have an independent lifetime, that is if the Mathematics degree is scrapped, the
Logic module lives on in the Computing degree; but the number of modules
also differs between the degrees.

If we want a tighter alliance between objects such that the “whole” owns its
“parts”, their lifetimes are identical, and it is unlikely that the parts have any
relationships with other objects outside of the alliance, then the association is
known as a composition. One example of a composition is the buttons on the
function pad of the calculator (see Figure 10.4). The FunctionPad object owns
5 function Button objects. The lifetime of both objects is identical. When the
function pad is disposed of, then the function buttons also cease to exist. The
function buttons do not form part of the numeric buttons (even the functional-
ity of the minus signs between the numeric key pad and the function pad are
different). Hence the function buttons cannot be used as part of the numeric
key pad.

Composition is a special kind of association, and is specified by drawing a
closed diamond at the “whole” end (see Figure 10.13).

Modify program Example_3 as follows.

(1) Include degrees and modules of your own choice.

(2) Create a different layout for the data on the writing pad.

NOW DO THIS

FunctionPad Function Button
1 5

Figure 10.13 Composition relationship between the function pad and its buttons

10.6 Building a Student Management System 599

10.6 Building a Student Management System

Since most of the data in the class Example_3 was hard-coded into the pro-
gram, the program could not be used to handle any changes to the number of
modules, degrees, or students at run time. It could only test the methods of the
defined classes. But the classes Degree, Module, StudentProgram, and
ModuleResult form the fundamental building blocks of a larger student man-
agement system. However, if such a system is to be truly usable, it will be neces-
sary for it to store and retrieve the data it manipulates between one use of the
system and the next. Therefore, it must use permanent files to hold the data.
The data in the files will need to be read and stored in appropriate data struc-
tures so that it can be accessed and manipulated before eventually being written
back to the files to enable the preservation of an up-to-date student manage-
ment system.

The classes Degree, Module, and StudentProgram do not contain the
functionality to manage more than one object; nor should they! What is needed
are new modules, known as managers, to organize the storage and manipulation
of many objects for each of the respective classes. As an example, we will look at
the functionality of just one manager, the module manager.

The ModuleManager is a class that is responsible for initializing a vector
with any previously defined module objects that have been stored in a serial-
izable file. This new manager class will allow module objects to be inserted
into the vector in alphabetical sequence, allow module objects to be deleted from
the vector, allow any modules to be selected and returned from the vector, return
all the modules stored in the vector, return the number of modules stored in the
vector, and finally save the contents of the vector in a serializable file. You
may have noticed that the class Module implemented the Serializable inter-
face; this is necessary if module objects are to be stored in a serializable file.

A complete source listing of the ModuleManager class follows.

import gui.*;
import java.io.*;
import java.util.*;

public class ModuleManager
{

static String nameOfFile = "MODULES.STREAM";
static WindowPane bigBrother;

// vector used to store all the modules
Vector moduleStore = new Vector();

/**
The ModuleManager class enables an object that manages the vector
used to store the modules. Management involves initializing the

600 Chapter 10 Objects Working Together

vector from a serializable file; inserting new modules in
alphabetical order into the vector; deleting modules from the vector;
selecting any number of modules from the vector; returning the number
of modules stored in the vector; returning all the modules stored in
the vector; and finally copying the contents of the vector to the
original serializable file.
@param parent is the name of the container class.
*/
public ModuleManager(WindowPane parent) throws Exception
{

bigBrother = parent;

// open a predefined file
File f = new File(nameOfFile);

// only if the file exists should its contents be copied to the
// vector
if (f.exists())
{

FileInputStream fis = new FileInputStream(nameOfFile);
ObjectInputStream in = new ObjectInputStream(fis);

moduleStore = (Vector)in.readObject();
in.close();
fis.close();

}
}

/**
Add any number of modules to the vector
*/
public void addModules()
{

String[] choice = {"yes","no"};
RadioButtons reply = new RadioButtons(bigBrother,

"Add another module?", choice);
String[] items = {"Module name","Exam weight"};
DataInputBox modules = new DataInputBox(bigBrother, items);

do
{

// input data for a module according to the names of the
// fields displayed by the data input box
modules.showDataInputBox();

10.6 Building a Student Management System 601

String[] values = new String[items.length];
values = modules.getFields();

// get name of module
String name = values[0];

// get exam weighting for module, if error use
// Integer.MAX_VALUE
int weight;
try
{

weight = new Integer(values[1]).intValue();
}
catch (Exception e)
{

weight = Integer.MAX_VALUE;
}

// instantiate new module
Module mod = new Module(name, weight);

// insert the module into the vector in alphabetical
// sequence
// ordered on the name of the module
insertInOrder(mod);

// request for more modules
reply.showRadioButtons();

} while (reply.getNameOfButton().equals("yes"));
}

/**
Inserts a module into the vector in alphabetical sequence
@param mod is the module to be inserted
*/
private void insertInOrder(Module mod)
{

String nameOfModule;
int sizeOfVector = moduleStore.size();

// if the vector is empty then just add the module to the
// vector
if (sizeOfVector == 0)

602 Chapter 10 Objects Working Together

{
moduleStore.addElement(mod);
return;

}

// compare the name of the module to be inserted with the name
// of each module stored in the vector; if the name of new
// module is less than or equal to the name of the module being
// compared, then insert the module into vector
for (int index=0; index != sizeOfVector; index++)
{

nameOfModule =
((Module)moduleStore.elementAt(index)).getModuleName();
if ((mod.getModuleName().toUpperCase()).

compareTo(nameOfModule.toUpperCase()) <= 0)
{

moduleStore.insertElementAt((Module)mod,index);
return;

}
}

// new module is inserted at the end of the vector
moduleStore.addElement(mod);

}

/**
Delete a number of modules from the vector.
*/
public void deleteModules()
{

String nameOfModule;
int length = moduleStore.size();

// if the vector is not empty
if (length != 0)
{

// request which modules are to be deleted
boolean[] selection = this.selectModules();

// since the vector will shrink in size after each
// deletion, it is necessary to delete the selected
// modules in reverse order
for (int index=length-1; index >= 0; index--)
{

if (selection[index])
{

10.6 Building a Student Management System 603

moduleStore.removeElementAt(index);
}

}
}

}

/**
Write the modules as objects in a serializable file
*/
public void saveModules() throws Exception
{

FileOutputStream fos = new FileOutputStream(nameOfFile);
ObjectOutputStream out = new ObjectOutputStream(fos);
out.writeObject(moduleStore);
out.flush();
out.close();
fos.close();

}

/**
Select any number of modules from the vector.
@return a boolean array indicating which modules have been selected
*/
public boolean[] selectModules()
{

String[] moduleNames;

int sizeOfVector = moduleStore.size();

// if vector contains at least one module
if (sizeOfVector != 0)
{

// instantiate an array to store the names of the modules
moduleNames = new String[sizeOfVector];

// store the names of all the modules found in the vector
// in the array
for (int index=0; index != sizeOfVector; index++)
{

Module name = (Module)moduleStore.elementAt(index);
moduleNames[index] = name.getModuleName();

}

// instantiate a list to enable module names to be
// selected
ScrollableList modules = new

604 Chapter 10 Objects Working Together

ScrollableList(bigBrother, "Modules", moduleNames);
modules.showList();

// return a boolean array indicating which module names
// have been chosen
return modules.getSelectedItems();

}
// if vector is empty then return a single-celled boolean array
// set to false
else
{

boolean[] noItems = {false};
return noItems;

}
}

/**
Return the number of modules stored in the vector.
@return number of modules
*/
public int getNumberOfModules()
{

return moduleStore.size();
}

/**
Return all the modules stored in the vector.
@return vector containing all the modules
*/
public Vector getModulesStored()
{

return moduleStore;
}

}

Using the ModuleManager class as reference, create and desk-
check the Java code for the class of DegreeManager.
NOW DO THIS

10.7 Menus Revisited

A modern-day student management system must have its own graphical user
interface that will allow a user to choose between activities that involve either
degrees, modules, or students programs. In the previous chapter you were intro-

10.7 Menus Revisited 605

duced to pop-up menus; in this chapter we will look at menus that drop-down
from a menu bar situated along the top of a container.

The MenuBar class, from the awt package, will allow a MenuBar object to be
displayed within a Frame by passing it to Frame.setMenuBar().

The Menu class, also from the awt package, represents a drop-down menu
pane that appears within a MenuBar.

The following code will create a MenuBar object containing just one menu-
bar item.

MenuBar bar = new MenuBar();

To the menu bar is added a drop-down menu containing the string literals con-
tained within the array moduleItems.

String[] moduleItems = {"add new modules", "delete modules",
"list all modules", "list selected modules",
"exit"};

Menu modules = new Menu("Modules");
for (int index=0; index != moduleItems.length; index++)

modules.add(moduleItems[index]);

bar.add(modules);

The menu bar is then added to the container, which must be a subclass of Frame.

setMenuBar(bar);

When a mouse-button is clicked over the name of the menu, the menu drops
down to allow a further selection of items. The container class with a menu
must implement the ActionListener interface by adding an action listener;
otherwise, pressing the mouse button of a selected item on the drop-down
menu will result in the creation of an event that cannot be handled.

modules.addActionListener(this);

Figure 10.14 illustrates the drop-down menu for the modules.
Rather than writing a new container class that contains a menu bar and

drop-down menus from scratch, we can easily create a new class
WindowWithMenuBar that is a subclass of the class WindowPane. The listing of
the source code for the WindowWithMenuBar class follows. Notice that although
three drop-down menus have been created for degrees, modules, and students,
only the modules menu has given the user any choice.

import gui.*;
import java.awt.*;
import java.awt.event.*;

606 Chapter 10 Objects Working Together

Figure 10.14 An Example of a drop-down menu

public class WindowWithMenuBar extends WindowPane implements ActionListener
{

static String NO_ITEM_SELECTED = "";

// contents of drop-down menus
String[] menuBarItems = {"Degrees","Modules","Students"};
String[] degreeItems = {"not yet implemented"};
String[] moduleItems = {"add new modules", "delete modules",

"list all modules", "list selected modules",
"exit"};

String[] studentItems = {"not yet implemented"};

// selected item from menu
String menuItem = NO_ITEM_SELECTED;

/**
The WindowWithMenuBar class enables an object that represents
a WindowPane that contains a number of drop-down menus.
*/
public WindowWithMenuBar()
{

super();

// instantiate menu bar object
MenuBar bar = new MenuBar();

// add degree items to menu bar
Menu degrees = new Menu(menuBarItems[0]);
degrees.add(degreeItems[0]);
bar.add(degrees);

10.7 Menus Revisited 607

// add module items to menu bar
Menu modules = new Menu(menuBarItems[1]);
for (int index=0; index != moduleItems.length; index++)

modules.add(moduleItems[index]);
bar.add(modules);

// add student items to menu bar
Menu students = new Menu(menuBarItems[2]);
students.add(studentItems[0]);
bar.add(students);

// set menu bar into frame
setMenuBar(bar);

// add action listeners for each menu
degrees.addActionListener(this);
modules.addActionListener(this);
students.addActionListener(this);

}

/**
Returns the selection from one of the drop-down menus.
@return A string containing the name of the selected item from a
menu.
*/
public String getMenuItem()
{

return menuItem;
}

// overridden method to detect which item is chosen from the menu bar
public void actionPerformed(ActionEvent event)
{

Object source = event.getActionCommand();

// check for degree items
if (source.equals(degreeItems[0]))
{

menuItem = (String)source;
return;

}

608 Chapter 10 Objects Working Together

Modify the WindowWithMenuBar class to complete the drop-
down menus for the degrees and students.
NOW DO THIS

// check for module items
for (int index=0; index != moduleItems.length; index++)
{

if (source.equals(moduleItems[index]))
{

menuItem = (String)source;
return;

}
}

// check for student items
if (source.equals(studentItems[0]))
{

menuItem = (String)source;
return;

}
}

}

10.8 Testing the Student Management System

The methods from the classes ModuleManager and WindowWithMenuBar can
now be tested. Each of the menu items for the Modules drop-down menu is
implemented in the test program, with the results of each test being written to a
WritingPad object.

Figure 10.15 illustrates the relationships and dependencies between the vari-
ous classes developed in this section.

The source code for the test program Example_4 follows. Having created
objects for a window with a menu bar and a module manager, the user is given a
choice of adding new modules, deleting modules, listing all modules, listing
only selected modules, or saving the current state of the modules and exiting
from the system.

import gui.*;
import java.util.*;

public class Example_4
{

public static void main(String[] args) throws Exception

10.8 Testing the Student Management System 609

WindowPane

WindowWithMenuBar

ModuleManagerExample_4

Module

Figure 10.15 Relationships between classes

{
// Open a window pane containing drop down menus
WindowWithMenuBar screen = new WindowWithMenuBar();
screen.showWindowPane();

// initialize menu item
String menuItem = WindowWithMenuBar.NO_ITEM_SELECTED;

// initialize previously chosen menu item, and initialize
// that no change in menu items selected has yet taken place
String previousMenuItem = menuItem;
boolean change = false;

// create a writing pad to display information
WritingPad pad = new WritingPad(screen);
pad.showWritingPad();

// create an object to manage the various transactions on
// modules
ModuleManager mm = new ModuleManager(screen);

610 Chapter 10 Objects Working Together

// get a selection from a drop-down menu
menuItem = screen.getMenuItem();
while (true)
{

// test to see if this is a new selection
if (menuItem.equals(previousMenuItem))

change = false;
else
{

change = true;
previousMenuItem = menuItem;

}

// add new modules
if (change && menuItem.equals("add new modules"))
{

mm.addModules();
}

// delete modules
else if (change && menuItem.equals("delete modules"))
{

mm.deleteModules();
}

// list all modules
else if (change && menuItem.equals("list all modules"))
{

// create a vector of all the modules
Vector modules = mm.getModulesStored();
int length = mm.getNumberOfModules();

// if vector empty then no modules stored
if (length == 0)
{

pad.write("[no modules listed]\n");
}

// display each module stored in the vector
for (int index=0; index != length; index++)
{

Module module =
(Module)modules.elementAt(index);

10.8 Testing the Student Management System 611

pad.write(module.getModuleName()+" "+
module.getExamRatio()+":"+
module.getCourseworkRatio()+"\n");

}
pad.write("\n");

}

// list only selected modules
else if (change &&

menuItem.equals("list selected modules"))
{

// test for the existence of any modules to select
if (mm.getNumberOfModules() == 0)
{

pad.write("[no modules to select]\n");
}
else
{

// modules selected are stored as true,
// otherwise stored as false; the boolean
// array is the same length as the total
// number of modules
boolean[] selection = mm.selectModules();

int length = selection.length;

// store all the modules in a vector
Vector modules = mm.getModulesStored();

// for each module selected, display
// information about the module
for (int index=0; index != length; index++)
{

if (selection[index])
{

// create a new module from the
// module selected
Module module =
(Module)modules.elementAt(index);

// display the information on the
// selected module

612 Chapter 10 Objects Working Together

pad.write(module.getModuleName()+
" "+module.getExamRatio()+":"+
module.getCourseworkRatio()+"\n");

}
}

}
pad.write("\n");

}

// save the current state of the module manager object
// and exit
else if (change && menuItem.equals("exit"))
{

mm.saveModules();
System.exit(0);

}

// get selection from a drop-down menu
menuItem = screen.getMenuItem();

}
}

}

Screen shots follow that were taken when the program was running. You should
run this program to get a feel for the functionality of the system before attempt-
ing the programming questions at the end of the chapter.

Summary 613

Run program Example_4 using your own test data.NOW DO THIS

S U M M A R Y

■ A number of classes that have a common theme may be grouped together
into a package. The package can be imported into any program that requires
the use of any of the classes that it contains.

■ For a class to be contained within a package it must have the keyword pack-
age inserted at the beginning of the class’s source file.

■ The package is stored in the same subdirectory as the package name.

■ Access to any class within the package is made possible by modifying the
CLASSPATH directive to indicate the correct search paths the compiler must
use when reconciling the packages specified in the import statements.

■ The entire Java development environment is based upon the concept of
packages.

■ To resolve any clash between two classes with the same names in two differ-
ent packages, simply qualify one of the classes with the name of the pack-
age from which it is contained.

■ If there exists a dependency between two classes from different packages,
then a dependency between the packages is said to exist.

614 Chapter 10 Objects Working Together

■ A single class on its own is not of much use. Classes work together to build
programs. An association is a structural relationship that specifies objects
from one class that are connected to objects of another class. Associations
are the “glue” that holds objects from different classes together to build a
computer program.

■ An association in which one class represents the whole and is composed
from many parts is known as an aggregation. The number of parts is known
as the multiplicity of the association.

■ If the lifetime of the whole and the parts is the same, and the parts do not
form part of another association with another class, then the association is
known as a composition, and not an aggregation.

■ A useful “group” technique for determining classes, methods, and their rela-
tionships with other classes is the use of CRC cards.

■ CRC cards help to identify (1) a commonality between classes and hence
group them into packages, (2) a commonality between methods of different
classes, and hence a hierarchy of classes, and (3) other classes that are
required to implement any dependencies, hence the associations with other
classes.

■ The Panel class from the awt package does not create a separate window,
yet is a container that must form a component within another container. The
use of the Panel as a superclass to a component is sufficient for items that
make up that component to be placed on to the Panel.

■ Drop-down menus may be used on any window that supports a menu bar.

Review Questions
True or False

1. CRC cards are used after classes and methods have been discovered.

2. CRC cards are used by project teams in designing object-oriented systems.

3. The UML notation for a composition is an empty diamond shape.

Short Answer

4. What is a package?

5. How do you declare a class to be part of a package?

6. How is a package stored in relation to its name?

Exercises 615

7. How do you nest a package within a package?

8. What are the advantages of storing classes within a package?

9. How does the Java system make use of packages?

10. What is the condition for dependency between two packages?

11. Discuss the term association in relation to classes.

12. What is aggregation?

13. How does composition differ from aggregation?

14. What is a Panel class?

15. How do you use a Panel class?

16. What does a CRC card represent?

17. What is a drop-down menu?

18. What are the restrictions on the use of a drop-down menu compared with a pop-up menu?

Exercises
19. Look up the Applet package from your Java documentation. Draw a UML diagram

showing the dependencies between the Applet package and associated packages within
Java. The answer to this question serves as a primer to the next chapter.

20. Use UML notation to show the relationship between:

(a) a Polygon class and a Side class;

(b) a Company and an Employee;

(c) a Company and its Departments;

(d) a half adder and two AND gates, an OR gate, and a NOT gate (see Figure 10.16).

21. Use CRC cards in the design of an information system for a school. You may want to
structure your answer using the classes School, Department, Student, Course, and
Instructor.

22. Based upon your answer to Question 21, draw a UML class diagram showing the rela-
tionships between the classes School, Department, Student, Course, and
Instructor.

23. Use CRC cards in the design of an Automatic Teller Machine (ATM) in a bank. You
may want to structure your answer using the classes ATM, Bank, Bank Account, and
Customer.

616 Chapter 10 Objects Working Together

NOT

OR

AND

AND SUM

CARRY

Figure 10.16 A half adder

24. Based upon your answer to Question 23, draw a UML class diagram showing the rela-
tionships between the classes mentioned in that question.

Programming Problems
25. Return to Section 10.2 and redevelop some of the classes of the Calculator for its use

with rational numbers only. Reuse the Rational class developed in Chapter 5. You
should display the fractions being computed as rational numbers, together with the
arithmetic operation selected and the result of the computation. For example, the dis-
play part of the Calculator might contain the following output:

-8/3 + 9/4 = -5/12

26. Return to Section 10.6 and write a class for the StudentProgramManager.

27. Return to Section 10.8 and complete the WindowWithMenuBar class so that it includes
all the functionality in the menus for both the DegreeManager and StudentProgram-
Manager classes.

28. Write a new class StudentManagementSystem that uses the manager classes for
Degree, Module, and StudentProgram and the revised WindowWithMenuBar class to
produce a complete student management system.

29. Return to your designs from Questions 23 and 24 and create a simulation of a banking
system that uses an ATM.

30. (a) Figure 10.16 illustrates the logic circuitry of a half adder. Implement a HalfAdder
class that comprises objects from ANDgate, ORgate, and NOTgate classes. Test the
HalfAdder class.

Programming Problems 617

HALF
ADDER

HALF
ADDER OR

Figure 10.17 A four-bit full adder

(b) Figure 10.17 illustrates the logic circuitry of a full adder composed of two half
adders and an OR gate. Using the classes you implemented in part (a), write a
FullAdder class.

(c) Devise a graphical interface to input two four-bit numbers and, using the
FullAdder class developed in part (b), show the result of adding the numbers.

This page intentionally left blank

C H A P T E R 11
Applets and Threads
All the programs you have written up to this chapter have been
application programs—each program was compiled into Java byte
codes and run using a Java interpreter.

This chapter introduces you to writing applet programs that are designed to be
run either by a Web browser or by an applet viewer. Your knowledge of creating and
implementing classes, handling exceptions, and devising graphical user interfaces
may also be used in conjunction with writing applets. In addition to having these
features, an applet will also allow you to play sounds and display images.

Before we write applets that can successfully run on a computer we need to
introduce a feature of programming that will permit quasi-concurrency through
the use of threads.

By the end of this chapter you should have an understanding of the following
topics.

■ An introduction to the terminology of the World Wide Web.

■ The construction of applets.

■ Multimedia applets with sound and images.

■ Arrays revisited.

■ Image maps.

■ An introduction to the meaning and use of threads.

■ Animation of images.

■ The limitations of applets.

■ Sounds and images, with applications.

619

620 Chapter 11 Applets and Threads

11.1 Introduction

The Internet is an international network of computers, or, more accurately, a
network of networks. For example, the network at Oxford Brookes University is
joined, via the Internet, to other networks all over the world, giving users global
access to people and information. The Internet is the hardware of network
cables, hubs, repeaters, and so on that enable computers from all around the
world to communicate with one another.

There are various resources available on the Internet, including e-mail, FTP,
Gopher, and Telnet.

E-mail is an electronic mailing system that allows you to send a message to
anyone that is connected to the Internet.

A File Transfer Protocol (FTP) server is a computer on the Internet that
stores a collection of files. Using FTP software, you can connect to any FTP
server, browse through the directories, and download files to your local machine.
Provided you have the access rights, you can also transfer files from your local
machine to the FTP server.

Gopher allows you to search for files and documents about a particular topic.
Telnet provides you with a method to log on to a computer on a remote site.

When you telnet to another computer, the resulting link is just like using a ter-
minal at the remote site.

The four Internet resources described (and there are others), all require dedi-
cated software tools, with each resource having its own user interface. As a result,
the different Internet resources with their different interfaces can at times present
a confusing system. The World Wide Web combines many of the Internet
resources into a consistent, user-friendly front end that is much easier to use.

The World Wide Web (WWW, the Web, or W3) is a distributed information
service on the Internet that allows access to documents containing links.
Information on the Web is displayed in the form of hypertext and hypermedia
documents.

Using the Web, you can access information located anywhere in the world.
The level of user interaction on the Web ranges from the simple selection and
retrieval of Web documents to the submission of completed forms, the inquiry of
databases, and the ability to access multimedia computer-based learning packages.

A hypertext document may be entered at many points and may be browsed in
any order by interactively choosing highlighted words or phrases to jump to the
next text or image to be viewed. The highlighted word or phrase in a hypertext
document is a hot link, and when selected by using a mouse, usually causes infor-
mation relevant to the word or phrase to be displayed.

Hypermedia is a more accurate term than hypertext since the links in the
WWW are not constrained to being text only. Links can also be made with still
images, sound, and video clips.

The Hyper-Text Mark-up Language (HTML) is the language that is used to
write WWW documents. In the context of this book, you are not expected to
understand the syntax of HTML. However, if you would like to know more
about HTML you can find an abundance of documentation and tutorials on the

11.1 Introduction 621

Web. You can also download editors from the Web that write the HTML syn-
tax for you, allowing you to concentrate on the contents of the document.

The user-friendly front end of the Web is a browser. This is the software
package that reads and formats the HTML pages to be viewed. There are sev-
eral popular browsers, such as Sun’s HotJava, Netscape’s Navigator, and
Microsoft’s Internet Explorer.

A Web browser provides the means to perform at least the following tasks.

■ Search the Web for information—known as surfing the net.

■ Use links in a hypertext document to move to different networked sites on
the Web.

■ Access any site on the Web.

■ Send and receive electronic mail (this is a secondary feature and is not avail-
able on all browsers).

■ Download files from other sites on the Web.

■ Interpret a text file written in HTML.

A fifth resource of the Internet, not previously mentioned, is the Hyper-Text
Transfer Protocol (HTTP). This is the set of rules that defines and controls the
flow of information via the Web. Both the Web server and Web browser under-
stand the HTTP language, and they use it to communicate with one another.
Part of the server’s job is to store Web documents; the other part is to deliver the
documents over the network to the Web browser making a request for the docu-
ments.

To gain access to other sites on the Web, you must provide a Uniform
Resource Locator (URL). Think of a URL as a networked extension of the hier-
archical filename concept; not only can you specify a file in a directory, but that
file and that directory can exist on any machine on the network. A URL com-
prises the following four parts that specify the unique address of a document on
the Web.

Resource descriptor http:

Separator //

Resource address www.users.globalnet.co.uk

Pathname /~bjholmes

If you want to know more about the authors of this textbook, then enter the full
URL at a browser as:

http://www.users.globalnet.co.uk/~bjholmes

to visit Barry’s home page on his Web site. If you visit his home page you can
mouse-click on hot links to the Jones and Bartlett Web site (the publishers of

www.users.globalnet.co.uk
http://www.users.globalnet.co.uk/~bjholmes

622 Chapter 11 Applets and Threads

SYNTAX

Applet tag: <APPLET code = applet-filename
width = pixel-width
height = pixel-height>

</APPLET>

this book), Oxford Brookes University (where he works), and Letts Educational
(another publisher for whom he writes textbooks).

If you enter the URL

http://www.csc.villanova.edu/~joyce

you can visit Dan’s home page at Villanova University.

11.2 Applets

An applet is a Java program designed to be run by a Java-enabled Web browser
or an applet viewer. A call to an applet is embedded in an HTML script file.
When a Web page is loaded that contains a reference to an applet, the browser
downloads the applet from the Web server and executes the applet on the
client’s machine. Having a piece of software invade your computer like this,
from anywhere on the Web, is a frightening prospect! To avoid the possibility of
the applet causing havoc on your computer, there are certain restrictions
imposed on what an applet is allowed to do. Towards the end of this chapter we
will briefly discuss what these restrictions are.

Before we start writing applets, it is necessary to consider how an applet is
called from an HTML script file. The only HTML you need to know to follow
this chapter is the <APPLET> tag, illustrated below. The following HTML script
file calls the file Example_1.class containing the Java byte codes of the com-
piled applet. The applet source code would be stored in a file named
Example_1.java, and it would be compiled in the same manner as a Java
application program.

<HTML>
<BODY>

<APPLET code=Example_1.class width=300 height=75>
</APPLET>

</BODY>
</HTML>

A Java applet is included in a Web page using the <APPLET> tag, which has the
following minimal syntax.

http://www.csc.villanova.edu/~joyce

11.2 Applets 623

applet

awt

lang

java

Figure 11.1 The dependency of an applet class

where the width and height refer to the initial width and height that the
applet requires in the browser’s window. The java.applet package contains
the following classes—Applet, AppletContext, AppletStub, and
AudioClip. Figure 11.1 shows the dependency of the Applet package to the
Java system.

Figure 11.2 shows the inheritance hierarchy of the Applet class.

Component

Container

Panel

Applet

Object

Figure 11.2 Applet class hierarchy

624 Chapter 11 Applets and Threads

Applet inherits from the Panel class (found in the awt package). Panel is a
container class, but unlike the Frame and Dialog classes, Panel does not create
a separate window of its own. A Panel is suitable for containing information
within a larger interface. For example, applets are displayed in a Panel that is
contained within a Web browser or applet viewer.

Because Panel is a container, it is possible to add all the awt graphical com-
ponents, discussed in Chapter 8, directly to the applet.

An abridged listing of the Applet class follows. For a complete listing, refer
to your Java documentation.

public class Applet extends Panel
{

// Default Constructor
public Applet();

// Instance Methods
public void destroy();
public AppletContext getAppletContext();
public String getAppletInfo();
public AudioClip getAudioClip(URL url, String name);
public URL getCodeBase();
public URL getDocumentBase();
public Image getImage(URL url, String name);
public String getParameter(String name);
public void init();
public void play(URL url);
public void play(URL url, String name);
public void start();
public void stop();
.
.
.

}

To create an applet you must create a subclass of Applet and override some or
all of the following methods:

■ init()—called after the constructor is invoked, when the applet first starts.

■ start()—called when the browser opens the applet’s window.

11.2 Applets 625

You do not need to explicitly call the methods init(), start(), stop(), destroy(),
or paint() since they are automatically called for you.

There is no main method in a Java applet, as there is in a Java application. Hence, it has
become common practice to override methods from the appropriate classes and allow the sys-
tem to call the methods automatically.

!

■ stop()—called when the browser changes to a new HTML page, making
the applet temporarily hidden.

■ destroy()—called when the applet exits; reverses any actions taken by
init(), freeing all resources the applet is holding.

The applet also overrides the paint() method from the java.awt.Component
class to draw an applet on the screen.

Since the Applet class inherits from the Panel class, which in turn inherits
from the Container, Component, and Object classes, respectively, you are at
liberty to override any of the methods found in these classes in an applet.

Program Example_1 illustrates how to write a simple applet for displaying
the familiar phrase “Hello World” in an applet viewer window.

// applet to display Hello World in a window

import java.awt.*;
import java.applet.*;

public class Example_1 extends Applet
{

Font font;

// override init() method
public void init()
{

setBackground(Color.black);
font = new Font("SansSerif", Font.BOLD+Font.ITALIC, 36);

}

// override paint() method to automatically display information
// in the applet's window
public void paint(Graphics g)

626 Chapter 11 Applets and Threads

Not all the applets developed in this chapter will run on all Web browsers; therefore, you
are advised to run the applets using Sun’s applet viewer.

!

{
// set font, and color and display message on
// the panel of the applet at position 50,50
g.setFont(font);
g.setColor(Color.yellow);
g.drawString("Hello World",50,50);

}
}

The applet was stored in a source file called Example_1.java and compiled
using the same javac command as for a Java application—for example javac
Example_1.java. The compiler produced a Java byte-code file called
Example_1.class. It is the file Example_1.class that is called from within
the HTML script file, saved as Example_1.html, that was shown earlier. Note
that, for each of the .java examples of this chapter, there is a corresponding
.html file that can be used to test the example provided.

After a successful compilation, the applet may be run on an applet viewer
by using the command appletviewer Example_1.html. Alternatively,
the applet may be run on a Java-enabled Web browser by opening the file
Example_1.html in the browser.

An applet viewer is software that will enable you to load and run applets on
your computer. An applet viewer was also downloaded as part of the Java 2 SDK
from Sun Microsystems Inc.

A screen shot from the running applet is shown below:

What lessons can we learn from this simple applet?
As you can see, we have used the methods getFont, setColor, and

drawString from the Graphics class, yet no attempt was made to set up a win-
dow on which to draw the graphics! After the program has run, we can close

11.2 Applets 627

down the window by pointing at the X button in the top right-hand corner of the
window or by invoking the drop-down menu from the applet viewer to close the
window; yet no window or event listeners have been declared in the program!

Since Java applets run inside a Web browser or applet viewer, the applets
take full advantage of the following facilities offered by the host software.

■ Applets may run in the browser’s window.

■ Event-handling (such as closing down a window) already exists for the
browser and may be shared by the applet.

■ The Graphics class may be used in the context of the browser’s window.

■ The interface of the Web browser or applet viewer may also be used to con-
trol the applet—for example, to stop the applet from running.

As an illustration of this last point, Figure 11.3 illustrates a drop-down menu
that may be used to control an applet running on the Sun applet viewer.

Figure 11.3 Drop-down menu from the applet viewer

628 Chapter 11 Applets and Threads

SYNTAX

Passing parameters to applets:

<APPLET code = .. >
<PARAM NAME=parameter-name VALUE=parameter-value>
.
.
</APPLET>

Example_1 used the awt Graphics class to draw a string in
the applet’s window. Modify Example_1 to draw shapes, such as rectangles, cir-
cles, and polygons.

NOW DO THIS

The applet is a subclass of the class java.applet.Applet and as such inherits
all the methods from its superclass.

The method init(), inherited from the superclass, has been overridden to
set the background color of the applet viewer’s window to black, the font to
SansSerif with a bold, italic style and a point size of 36.

The Web browser or applet viewer invokes the paint() method automati-
cally to allow the applet to draw itself in the browser’s window. By overriding
the paint() method, we can get the browser to draw what we want.

11.3 Input to Applets

An HTML script file may pass values to an applet, just as arguments may
appear in the command line to run a Java application program. The syntax to
define arguments in an HTML script file, to be passed to an applet, follows.

For example, if we wanted to modify Program Example_1 to accept parameters
for defining the size of a character, the font, the color of the letters, the color of
the background, and the message, then we would modify the HTML script file
as follows.

<HTML>
<BODY>

<APPLET code=Example_2.class width=350 height=80>

<PARAM NAME=size VALUE="24">
<PARAM NAME=font VALUE="Serif">

11.3 Input to Applets 629

<PARAM NAME=color VALUE="yellow">
<PARAM NAME=background VALUE="black">
<PARAM NAME=message VALUE="The truth is out there!">

</APPLET>

</BODY>
</HTML>

Notice that each parameter is given a name, and the value of the parameter is
always treated as a string in the HTML script file.

Within the applet, the value of the parameter is obtained by using the
getParameter applet class method. For example, to obtain the point size of a
character you would use:

int sizeParameter = new Integer(getParameter("size")).intValue();

The getParameter method returns the value of the parameter as a string.
Therefore, when dealing with numbers, the string will need to be converted into
a number of the appropriate type.

Clearly, in the case of the remaining four parameters in the HTML script
file, when a parameter is a string type there is no need for any further type con-
version. For example,

String messageParameter = getParameter("message");

The names given to the parameters in the HTML script file need not be the
same as the names given to the variables within the applet.

Notice from Program Example_2 that it is perfectly legal to include your
own methods in an applet. You are not confined to the predefined methods
already mentioned in this chapter. The method convertColorString does just
what the name implies—it takes a string parameter that represents the name of
a color and returns the appropriate Color constant.

// applet to display a message in a window; the font style, font size,
// background and foreground colors and the message are input as parameters
// to the applet

import java.awt.*;
import java.applet.*;

public class Example_2 extends Applet
{

630 Chapter 11 Applets and Threads

int sizeParameter;
String colorParameter;
String backgroundParameter;
String messageParameter;
Font font;

private Color convertColorString(String color)
// method to convert the string name of a color to a Color object
// if the string name does not exist return the Color black
{

if (color.equals("red")) return Color.red;
else if (color.equals("yellow")) return Color.yellow;
else if (color.equals("blue")) return Color.blue;
else if (color.equals("magenta")) return Color.magenta;
else return Color.black;

}

// override init method to assign the values of the parameters
// from the HTML file to variables within the applet
public void init()
{

sizeParameter = new Integer(getParameter("size")).intValue();
colorParameter = getParameter("color");
backgroundParameter = getParameter("background");
messageParameter = getParameter("message");
font = new Font(getParameter("font"), Font.BOLD,

sizeParameter);
}

public void paint(Graphics g)
{

// set font, color, background color and display
// a message on the screen at position 50,50
g.setFont(font);
g.setColor(convertColorString(colorParameter));
setBackground(convertColorString(backgroundParameter));

g.drawString(messageParameter,50,50);
}

}

The best way to view the output from this program is to run the program. You
will then observe that the background is colored black and the message is writ-
ten using the color yellow.

11.3 Input to Applets 631

Edit the parameters in the HTML script file, choose a different
point size, foreground and background colors, and a new message. Save the file
and open the HTML script file in either a Web browser or applet viewer. Notice
that without changing the Java applet, the appearance of the screen has
changed.

NOW DO THIS

Projected light, the type you find on a television screen or computer monitor, uses the pri-
mary colors of Red, Green, and Blue (RGB). Reflected light, the type you find on a painting

or photograph, uses the primary colors of Red, Yellow, and Blue (RYB).

1i

Here is a screen shot of the running applet:

Input to applets can also be through any graphical input components displayed
in the applet’s window, such as dialog boxes, radio buttons, and check boxes.
In the next example we choose to use scrollbars for user input. You are
already familiar with using a scrollbar for input when you used the Slider
class from the avi package. Using your Java documentation, look up the
java.awt.Scrollbar class and study the descriptions of the methods in con-
junction with the next program.

Program Example_3 takes the use of graphics with applets a little further. In
this program scroll bars are used to input the intensities for three colors—red,
green, and blue. The colors are electronically mixed and the resultant color is
displayed.

632 Chapter 11 Applets and Threads

The Color class in the awt package contains a constructor to allow you to cre-
ate a Color object from the intensities of the three colors of the RGB system.
This Color object may then be used as a parameter to set the fill color of a
shape from the Graphics class using the method setColor.

Although the Web browser or applet viewer can handle the events created
by closing a window in an applet, an event listener must be used when inputting
data via a scroll bar.

// applet to display a color swatch

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class Example_3 extends Applet implements AdjustmentListener
{

Label redLabel = new Label("red");
Label greenLabel = new Label("green");
Label blueLabel = new Label("blue");

TextField redValue = new TextField(4);
TextField greenValue = new TextField(4);
TextField blueValue = new TextField(4);

Scrollbar redBar = new Scrollbar(Scrollbar.HORIZONTAL, 0,1,0,256);
Scrollbar greenBar = new Scrollbar(Scrollbar.HORIZONTAL,0,1,0,256);
Scrollbar blueBar = new Scrollbar(Scrollbar.HORIZONTAL,0,1,0,256);

int red, green, blue;

public void init()

{
setLayout(new FlowLayout(FlowLayout.LEFT));
setBackground(Color.white);

// add a text field, label and scrollbar for each of the RGB
// colors to the panel
add(redValue); add(redBar); add(redLabel);
redBar.setVisible(true);
add(greenValue); add(greenBar); add(greenLabel);
greenBar.setVisible(true);
add(blueValue); add(blueBar); add(blueLabel);
blueBar.setVisible(true);

11.3 Input to Applets 633

// add listeners for each of the RGB scrollbars
redBar.addAdjustmentListener(this);
greenBar.addAdjustmentListener(this);
blueBar.addAdjustmentListener(this);

}

public void paint(Graphics g)
{

// create a Color object from the intensities of the RGB colors
Color rgb = new Color(red,green,blue);

// set the fill color
g.setColor(rgb);

// draw a filled 3D rectangle in the panel
g.fill3DRect(10,100,155,100,true);

}

public void adjustmentValueChanged(AdjustmentEvent event)
{

// depending upon which scrollbar was moved get the
// intensity of the color, and set the text field
// of the RGB color to this value
if (event.getAdjustable() == redBar)
{

red = event.getValue();
redValue.setText(String.valueOf(red));

}
else if (event.getAdjustable() == greenBar)
{

green = event.getValue();
greenValue.setText(String.valueOf(green));

}
else
{

blue = event.getValue();
blueValue.setText(String.valueOf(blue));

}

// call repaint that will automatically call the overridden
// paint method
repaint();

}
}

634 Chapter 11 Applets and Threads

Return to your modified version of program Example_1, where
you drew different shapes in the applet’s window. Introduce a set of radio but-
tons to input a fill color for the shapes you used. Re-draw all the shapes as filled
shapes using the color input from the radio button. If you cannot remember how
to construct radio buttons, turn back to Chapter 8 and re-read Section 8.5.

NOW DO THIS

A screen shot of the running applet follows:

The RGB mix of 230 red, 95 green, and 50 blue gives a burnt-orange/light-
brown color.

11.4 Playing Sounds

If you examine the methods of the Applet class you cannot fail to notice such
methods as getAudioClip and play. Java applets have the ability to play
sounds on your computer.

File formats for audio files have already been described in Chapter 3. AU
sound files use an audio format developed for Sun workstations and are often
used to distribute sound clips via the Web.

Ten sounds, ranging from a dog barking to a train whistling, have been down-
loaded from the Oxford University Sound Archive. This archive allows you
public access to many useful sounds. If you want to visit this site, the URL is:

http://www.comlab.ox.ac.uk/archive/sound.html

The sounds used in Program Example_4 may be found under the hot key
Sun demonstration sounds on this site.

http://www.comlab.ox.ac.uk/archive/sound.html

11.4 Playing Sounds 635

There are three statements necessary to play an audio clip:

1. AudioClip sound;

2. sound = getAudioClip(getCodeBase(), source+".au");

3. sound.play();

The first statement declares a variable sound of type AudioClip. The class
AudioClip is part of the applet package and contains the following methods.

public interface AudioClip
{

// methods
public abstract void loop();
public abstract void play();
public abstract void stop();

}

The second statement initializes the variable sound with an AudioClip file.
The format of the getAudioClip method that is invoked in the second state-
ment is:

public AudioClip getAudioClip(URL url, String name);

As you can see, this method requires two parameters, one of type URL and one of
type string. In our example statement we use the method getCodeBase() to
provide the required URL—it returns the URL from which the applet’s code was
loaded. The string parameter refers to the directory and filename of a particular
AU sound file. The string is composed from a concatenation of the name on the
button (source of the event) and the type of file (.au). In our example:

source+".au"

The third statement, play, executes the sound variable by playing the contents
of the AudioClip file.

// program to demonstrate the use of sound in an applet

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class Example_4 extends Applet implements ActionListener
{

// initialize an array with the names of the sounds
String[] soundNames = {"bark","computer","crash","cuckoo","doorbell",

"drip","gong", "ring","spacemusic","train"};

636 Chapter 11 Applets and Threads

// instantiate an array of buttons
Button[] button = new Button[soundNames.length];

AudioClip sound;

// override init method to display an array of buttons
// with the names of the sounds written on the buttons
public void init()
{

setLayout(null);
setBackground(Color.white);

for (int index=0; index != soundNames.length; index++)
{

button[index] = new Button(soundNames[index]);
button[index].setLocation(20,25*index);
button[index].setSize(100,20);
button[index].setForeground(Color.white);
button[index].setBackground(Color.black);
button[index].addActionListener(this);
add(button[index]);

}
}

// use an implementation of the actionPerformed method taken
// from the ActionListener abstract class
public void actionPerformed(ActionEvent event)
{

// find the name of the button that was pressed
String source = event.getActionCommand();

for (int index=0; index != soundNames.length; index++)
{

// inspect each sound name with the sound names in the
// array
if (source.equals(soundNames[index]))
{

// play the appropriate audio clip
sound = getAudioClip(getCodeBase(),source+".au");
sound.play();
return;

}
}

}
}

11.5 Displaying Images 637

Surf the internet for new sources of .au sound files. Pay atten-
tion to any copyright notices and infringements before you download a new set of
sound files. Modify program Example_4, re-label the buttons, and play the new
sounds of your choice.

NOW DO THIS

Obviously, the results from this applet can be heard only by running the pro-
gram on a multimedia computer (one that includes a sound card and speakers).
The layout of the buttons on the applet follows.

Note that the class AudioClip also contains methods loop() (to repeatedly
play a sound) and stop() (to terminate a sound).

11.5 Displaying Images

Let us turn our attention to using applets to display images on the screen. Image
files are limited to GIF files (Graphic Interchange Format)—a commonly used
file-compression format developed by CompuServe for transferring graphics
files to and from online services, and JPEG files (Joint Photographic Experts
Group), an image-compression format used to transfer color and monochrome
photographs and images over computer networks. Along with GIF, the JPEG
format is one of the most common ways photographs are moved over the Web.

638 Chapter 11 Applets and Threads

The Applet class provides a method to read an image over a network and
return the corresponding Java object. The signature of the getImage method is:

public Image getImage(URL url, String name);

The url is returned by the Applet class method getDocumentBase. This
method returns the base URL from which the HTML document containing
the applet was loaded, in other words the url of the document in which the
applet is embedded.

The name refers to the filename of the image.

Within the java.awt package is an Image class. An Image object may not be
instantiated directly through a constructor; it must be obtained through a method
call, such as Applet.getImage(). The Graphics class defines several methods
for drawing an image; the method used in the following examples has the format:

public abstract boolean drawImage(Image img,
int x, int y,
int width, int height,
ImageObserver observer);

Program Example_5 uses these ideas in a program to display three JPEG
images on the screen.

// applet to display photographic images on the screen

import java.awt.*;
import java.applet.*;

public class Example_5 extends Applet
{

// declare names of three Image variables
Image dancers, mask, figure;

// override init method to assign the image files to the three
// variables
public void init()
{

dancers = getImage(getDocumentBase(),"fig1.jpg");
mask = getImage(getDocumentBase(),"fig2.jpg");
figure = getImage(getDocumentBase(),"fig3.jpg");

}

// display the three images on the screen

11.6 Loading Images 639

public void paint(Graphics g)
{

g.drawImage(dancers,50,50,150,120,this);
g.drawImage(mask, 250,50,150,120,this);
g.drawImage(figure, 450,50,150,120, this);

}
}

The following screen shot shows the results of running the program.

You may have noticed that during the running of this applet the three images
did not appear on the screen simultaneously.

11.6 Loading Images

When a program is loading images, due to timing and communication prob-
lems, the images may often appear as partial images. To eliminate partial images
being displayed, use MediaTracker to load one or more images and wait until
those images have been completely loaded and are ready to use. The methods
from the MediaTracker class keep track of the status of any number of Image
objects. A partial listing of the MediaTracker class follows. For the full docu-
mentation, refer to the Sun SDK API documentation.

public class MediaTracker extends Object
{

// fields
public final static int ABORTED;
public final static int COMPLETE;
public final static int ERRORED;
public final static int LOADING;

// constructor

640 Chapter 11 Applets and Threads

public MediaTracker(Component comp);

// methods
public void addImage(Image image, int id);
public boolean isErrorAny();
public int statusAll(boolean load);
public void waitForAll() throws InterruptedException;

.

.
}

Here are descriptions of some of the more important methods:

■ addImage() method registers an image to be loaded and tracked and
assigns it a specified identifier value.

■ isErrorAny() method checks whether any errors have occurred when load-
ing images.

■ statusAll() method returns the status of all images, and returns one of the
field constants.

■ waitForAll() method loads all images and returns when all images have
been loaded or received an error. Since you are putting the application pro-
gram into a waiting state, this method is capable of throwing an interrupted
exception that may occur during the running of the application program.

Code to retrieve images from files and to store the images in an array can be
written making full use of the methods in the MediaTracker class.

In this segment of code, the filenames of the images are stored in a one-
dimensional array called filenames, and the images themselves are stored in a
one-dimensional array called photos.

// instantiate an object of the MediaTracker class
MediaTracker tracker = new MediaTracker(this);

// declare a one-dimensional array to contain the images of the photos
Image[] photos = new Image[filenames.length];

// for each image file
for (int index=0; index != filenames.length; index++)
{

// get the image object from the file and store it in the array
photos[index] = getImage(getDocumentBase(),filenames[index]);
// register an image to be loaded and tracked
tracker.addImage(photos[index],index);

11.7 Arrays Revisited 641

Modify program Example_5 by incorporating the media tracker
code. Re-compile and run the program. Do you notice how smoothly the images
are displayed on the screen?

NOW DO THIS

}

// wait for all images to be loaded
try
{

tracker.waitForAll();
}

catch (InterruptedException e){}

11.7 Arrays Revisited

Up to now we have managed to use one-dimensional arrays for storing either
primitive data types or objects. Now is the time to increase your knowledge of
arrays by investigating two-dimensional arrays. The topic of two-dimensional
arrays has nothing to do with applets and threads, however, it is necessary to
introduce the ideas of a two-dimensional array before solving the next problem
on image maps.

An array is not confined to one dimension (one index). In fact, an array can
be extended to two dimensions and beyond in order to provide a flexible data
structure for the solution to a problem. A two-dimensional array is a repetition
of one-dimensional arrays. The structure can be thought of as a matrix or grid.
In Figure 11.4 the two-dimensional array represents the average monthly rain-
fall over four regions of an island and is composed from four one-dimensional
arrays, where each one-dimensional array is represented by a row. Each row rep-
resents a region of the island—row 0 is North, row 1 is South, row 2 is East, and
row 3 is West. Each column represents the average rainfall for one month—col-
umn 0 is January, column 1 is February, column 2 is March, and so on up to and
including column 11 which represents December.

The array may be initialized at its point of declaration as follows.

int[][] rainfall = {{14,13,11,9,5,3,1,1,4,8,9,12},
{17,18,15,13,11,9,7,8,9,10,13,15},
{9,8,6,4,2,1,0,1,3,7,9,10},
{12,11,9,6,4,2,1,3,5,8,10,13}};

642 Chapter 11 Applets and Threads

columns

0 14 13 11 9 5 3 1 1 4 8 9 12

1 17 18 15 13 11 9 7 8 9 10 13 15

2 9 8 6 4 2 1 0 1 3 7 9 10

3 12 11 9 6 4 2 1 3 5 8 10 13

0 1 2 3 4 5 6 7 8 9 10 11

rows

Figure 11.4 A two-dimensional array storing average rainfall values

Alternatively the array may be declared

static final int REGIONS = 4;
static final int MONTHS = 12;

int[][]rainfall = new float[REGIONS][MONTHS];

where there are 4 regions and 12 months and the data for the average rainfall
can be stored in the array having first been read from a data stream.

Access to any cell in the two-dimensional array is by row and then by col-
umn. For example, the rainfall for the North region (row 0) in the month of
May (column 4) is 5. This array element is written as rainfall[0][4].

What is the average rainfall for the following:

(i) South region, during March? Answer - rainfall[1][2] = 15

(ii) East region during September? Answer - rainfall[2][8] = 3

Access to each cell, in turn, within the two-dimensional array is possible using
two for loops. An outer for loop is used to process each row, and an inner for
loop processes each cell within the one-dimensional array depicted by the row.
For example, the contents of the two-dimensional array illustrated in Figure
11.4 can be output using the following code.

11.7 Arrays Revisited 643

for (int row=0; row != REGIONS; row++)
{

for (int column=0; column != MONTHS; column++)
{

screen.write(rainfall[row][column] + " ");
}

screen.write("\n");
}

If you perform a desk check on this code, you will end up with the following values.

row 0

(row != 4)? true

column 0 1 2 3 4 5 6 7 8 9 10 11 12

(column != 12)? true true true true true true true true true true true true false

rainfall[row][column] 14 13 11 9 5 3 1 1 4 8 9 12

row 1

(row != 4)? true

column 0 1 2 3 4 5 6 7 8 9 10 11 12

(column != 12)? true true true true true true true true true true true true false

rainfall[row][column] 17 18 15 13 11 9 7 8 9 10 13 15

row 2

(row != 4)? true

column 0 1 2 3 4 5 6 7 8 9 10 11 12

(column != 12)? true true true true true true true true true true true true false

rainfall[row][column] 9 8 6 4 2 1 0 1 3 7 9 10

row 3

(row != 4)? true

column 0 1 2 3 4 5 6 7 8 9 10 11 12

(column != 12)? true true true true true true true true true true true true false

rainfall[row][column] 12 11 9 6 4 2 1 3 5 8 10 13

row 4

(row != 4)? false

644 Chapter 11 Applets and Threads

Write an applet to store the average rainfall data, and calculate
and display the following information.

(1) The total average rainfall for the island.

(2) The total average rainfall for each region.

(3) The total average rainfall for each month.

(4) The driest month on the island.

Hint—store the names of the months in a one-dimensional array so you can use
the names of the months for output when required.

NOW DO THIS

It is also possible to use two for loops to access each cell in order to add
together every number to compute the total of all the rainfall averages for the
island.

int total = 0;

for (int row=0; row != REGIONS; row++)
{

for (int column=0; column != MONTHS; column++)
{

total = total + rainfall[row][column];
}

}

You should desk check the code so that you understand how all the numbers in
a single row are added together before progressing to the next row.

Using just a single for loop to control access to each column, it is possible to
calculate the total of all the rainfall averages for any region, provided the region
is first translated into a row value.

for (int column = 0; column != MONTHS; column++)
regionalTotal = regionalTotal + rainfall[row][column];

Similarly, using a single for loop to control access to each row, it is possible to
calculate the total of all the rainfall averages for any month over the island, pro-
vided the month is first translated into a column value.

for (int row = 0; row != REGIONS; row++)
monthlyTotal = monthlyTotal + rainfall[row][column];

11.8 Image Maps 645

11.8 Image Maps

The topics covered in the previous two sections on loading images and two-
dimensional arrays can be put into practice in the solution to the next problem.

To create an image map, first an image is displayed on the screen. The coor-
dinates of the parts of the image where you want events to occur, such as dis-
playing further information, are stored in a two-dimensional array for future use.

When a mouse-pointer passes over the image on the screen, the coordinates
of the mouse in relation to the parts of the image where events occur are known
and can be compared. If the mouse-pointer is within a set region, then it is pos-
sible to, say, display new information on the screen relating to that part of the
image.

In the following example, an image of the World is displayed on the screen,
and when a mouse passes over the image, the coordinates of the mouse in rela-
tion to the image are known, and the event of a mouse button being pressed can
be used to display information on the screen relating to that part of the World
image selected by the mouse pointer. In this example, when the mouse button is
pressed over a country of the World, the national flag and the name of the coun-
try are displayed in the top right-hand corner of the screen.

The position of the approximate center of each country is stored as per-
centages of the width and height of the World image in a two-dimensional
array. Upon receiving a mouse-button pressed event, the coordinates of the
position of the mouse are compared to the position of the center of each coun-
try. If the position of the mouse pointer is within pre-defined limits, then the
image of the country’s national flag and the name of the country are displayed
on the screen.

In this example, images of eight national flags are stored in the gifImage
array; a ninth image, that of the World map, is stored in the last cell
gifImage[8] of the array.

// program to demonstrate image maps

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class Example_6 extends Applet
{

static final int NUMBER_OF_IMAGES = 9;

String[] countries = {"Australia","Canada","India","Japan",
"New Zealand","Spain","UK","USA"};

double[][] mapRef = {{0.77,0.54},{0.27,0.26},{0.65,0.4},{0.74,0.33},
{0.84,0.6},{0.5,0.32},{0.5,0.28},{0.28,0.32}};

646 Chapter 11 Applets and Threads

Image[] gifImages = new Image[NUMBER_OF_IMAGES];

Applet applet;
MediaTracker tracker;

int width, height;
int x,y,screenX, screenY;

public void init()
{

applet = this;
Toolkit tools = this.getToolkit();
Dimension size = tools.getScreenSize();
width = size.width;
height = size.height;

tracker = new MediaTracker(this);

// get images from the files and assign to the gifImages array

for (int index=0; index != gifImages.length; index++)
{

gifImages[index] = getImage(getDocumentBase(),
"image"+index+".gif");

tracker.addImage(gifImages[index],index);
}

try
{

tracker.waitForAll();
}
catch (InterruptedException e){}

addMouseListener(new HandleMouseEvents());
}

// paint single image of World map
public void paint(Graphics g)
{

g.drawImage(gifImages[8],100,150,800,400,this);
}

private class HandleMouseEvents extends MouseAdapter

11.8 Image Maps 647

{
public void mousePressed(MouseEvent event)
{

Image flag = null;
String country = null;

x=event.getX();
y=event.getY();
Graphics g = getGraphics();

// erase previous flag from window
g.setColor(Color.white);
g.fillRect(750,25,120,130);
g.setColor(Color.black);

for (int index=0; index != countries.length; index++)
{

screenX = (int)(width*mapRef[index][0]);
screenY = (int)(height*mapRef[index][1]);

if ((x >= screenX-15 && x < screenX+15) &&
(y >= screenY-15 && y < screenY+15))

{
flag = gifImages[index];
country = countries[index];

}
}

if (flag != null)
{

g.drawImage(flag,750,25,120,90,applet);
g.drawString(country,750,125);

}
}

}
}

Here is a screen shot from running the applet and selecting a map position
within Canada.

648 Chapter 11 Applets and Threads

Modify program Example_6 by increasing the number of map
references in the two-dimensional array where the flags of new countries will be
displayed. Supply a set of new images for the new flags.

NOW DO THIS

Multimedia programs often require a large number of media files to be downloaded with an
applet. Normally, each file is transferred in a uncompressed form. To improve the efficiency

of data transfer and data storage, all dependent files may be combined into one single com-
pressed Java Archive (JAR) file. The single compressed file can be transferred from the Web
server to the Web browser more efficiently. See your JDK documentation for further information.

1i

11.9 Threads 649

11.9 Threads

Program Example_7 is written to simulate a digital clock that contains a display
for hours, minutes, and seconds. The class Calendar found in the java.util
package contains many methods and constants to represent the date and time.

The constructors are protected in the Calendar class, and it is necessary to
use the getInstance() method that returns an instance of a Calendar sub-
class. For example,

Calendar time=Calendar.getInstance();

If you inspect the contents of the Calendar class, you may notice a list of field
constants, among which you will find the integer class constants HOUR, MINUTE,
and SECOND. You need to use the instance method get to obtain a value for the
three field constants. For example,

int hours = time.get(Calendar.HOUR);
int mins = time.get(Calendar.MINUTE);
int secs = time.get(Calendar.SECOND);

With this newfound knowledge, you may think it is very straightforward to
write an applet to regularly sample the time of day and display the values for
hours, minutes, and seconds. Indeed, the program is straightforward, and
chances are you may create a program similar to Program Example_7. You may
recall that the paint method is called by Java whenever an applet needs to be
painted. However, telling the applet to continuously paint the new time requires
a call to the method repaint() found in the Container class. The repaint()
method in turn automatically calls the update() method that clears the screen
and then calls paint.

In the program, the paint method is overridden and contains the code to
display the time on the screen. After the time (hours, minutes, and seconds) has
been updated, there always follows a call to repaint.

// applet to demonstrate the need for threads when
// continuously repainting a window

import java.applet.*;
import java.awt.*;
import java.util.*;

public class Example_7 extends Applet
{

Font font = new Font("Monospaced",Font.BOLD,16);

int hours, mins, secs;

650 Chapter 11 Applets and Threads

// override the start method to calculate the time of day
// and call the repaint() method to display the time
public void start()
{

while (true)
{

Calendar time=Calendar.getInstance();

hours = time.get(Calendar.HOUR);
mins = time.get(Calendar.MINUTE);
secs = time.get(Calendar.SECOND);

repaint();
}

}

// display the time of day on the screen
public void paint(Graphics g)
{

g.setFont(font);
g.drawString(String.valueOf(hours)+":"+

String.valueOf(mins)+":"+
String.valueOf(secs),50,50);

}
}

A screen shot from running the applet follows:

Oh, the results did not work out quite as expected! The applet window has
been displayed; however, there is no sight of the time! When you attempt to
stop the applet running, you continue to press the mouse button over the win-
dow-close symbol, and if you are lucky, after a short while the window closes

11.9 Threads 651

and the program stops running. This is not a very satisfactory outcome to what
appeared to be a simple solution to the problem.

What has gone wrong?
An applet does not have a main method. Instead, we override the methods

init(), start(), stop(), and so on and let the Web browser or applet viewer
invoke these overridden methods. In other words, the running of the applet is
dependent upon when the browser or viewer decides to execute methods like
init(), start(), stop(). An applet, unlike an application, is not in control of
itself; it simply responds when told to do so by the Web browser or applet
viewer.

Because the Web browser or applet viewer is in control, it is necessary that
the methods you override should take very little time to execute. These methods
should not enter into time-consuming work.

The method repaint() is a request for the applet viewer or Web browser to
repaint your applet as soon as it can. The important words are “as soon as it
can.” In Program Example_7, the Web browser or applet viewer cannot regain
control and find time to execute repaint() since it is stuck in an infinite loop.
To prove the point, insert the statement System.out.println("start
method"); anywhere inside the while loop; recompile the applet, then execute
the corresponding HTML source file. We know that the applet window
remains blank, but just look at the terminal or MSDOS window—the state-
ment start method is displayed over and over again, indicating that the applet
is still running, but the Web browser or applet viewer has no spare time to exe-
cute the repaint() method. Convinced?

To resolve this problem we turn to Java threads. Most desktop PCs contain a
single processor; however, the illusion of several programs running at once can
be produced by rapidly swapping between the programs that have been loaded,
allocating a few milliseconds to each program in rotation. The technique is
known as multitasking and is operating-system dependent. Each process runs in
its own memory space under a single thread of control.

As a thread executes code, it carries out a sequence of actions; it does the
following:

■ Uses the value of a variable.

■ Assigns a value to a variable.

■ Performs arithmetic operations.

■ Performs conditional tests.

■ Performs method invocations.

Within a program there are often separate actions that are more or less inde-
pendent of each other and that could be run as separate subprocesses within the
overall program. (Often it is useful to think of a subprocess as a thread.) This
approach is called multithreading.

652 Chapter 11 Applets and Threads

The technique of multithreading depends more on the language in which
the program was written than on the operating system being used. Java is an
implicitly threaded language—several threads are started automatically every
time you run a Java applet or application. For example, there will be separate
threads for each of the following:

■ Events generated by users (pressing buttons in a graphical user interface).

■ Automatic garbage collection (watching for previously allocated memory
that is no longer needed and freeing it up).

■ Creation of a programmer’s own threads for running sections of a program
independently.

You may wonder how the computer can cope with more than one thread of exe-
cution at any one time. Thread objects allow multithreaded Java programming,
where a single Java Virtual Machine can execute many threads in an interleaved
or concurrent manner. Threads independently execute Java code that operates
on Java values and objects residing in shared memory.

The computer must share its time between executing the code running in dif-
ferent threads. Unfortunately, different operating systems have different
approaches for coping with multithreading. As an example, both Windows 95
and Windows NT give each thread a portion (or slice) of time to use the proces-
sor; at the end of the time slice, the code running in that thread is suspended
(swapped from the processor) and the code for the next thread that is ready to run
is given a slice of time on the processor. The business of running program code on
the processor for different threads of execution continues in a round-robin man-
ner until program execution is completed or the program is abandoned.

A thread has a life cycle:

■ A thread must be created (born) using an appropriate constructor.

■ A thread must be started; however, depending on the availability of the
processor, the thread may only go into a ready (to be run) state.

■ A thread can be running (the program code associated with the thread is
being executed on the processor).

■ After a thread has been running, it can go into one of several states.

■ Ready (to be run when it is the thread’s turn and a processor becomes free).

■ Sleeping (not requiring the processor until it wakes up after a stated time
period).

■ Suspended (not requiring the processor until it is resumed at some later
time).

■ Waiting (not requiring the processor until notified that it may be trans-
ferred to a ready state).

11.9 Threads 653

■ Blocked (not requiring the processor until the completion of an I/O opera-
tion).

■ A thread can die when it is no longer required. The garbage collector will
return the unwanted memory space back to the heap.

To solve the problem of the digital clock not appearing, we need to allow the
applet to run in parallel with the Web browser. In other words, we need to give
the applet its own thread of execution to run alongside the Web browser.

The java.lang.Thread class encapsulates all the information about a sin-
gle thread running on the Java interpreter. To create a thread you must pass a
Runnable object (an object that implements the Runnable interface by defin-
ing a run() method) to the Thread constructor, or you must subclass Thread
so that it defines its own run() method.

The run() method of the Thread or of the specified runnable object is the
body of the thread—it begins executing when the start() method of the
Thread object is called, and it executes until either the run() method returns or
the stop() method of the Thread object is called. An abridged listing of the
Thread class follows. For a complete listing, consult your Java documentation.

public class Thread extends Object implements Runnable
{

// constructor(s)
public Thread();
public Thread(String name);
public Thread(Runnable target);
.
// class methods
public static native Thread currentThread();
public static native void sleep(long millis) throws
InterruptedException;
.
// public instance methods
public void destroy();
public final String getName();
public final native boolean isAlive();
public final void resume();
public void run();
public synchronized native void start();
public final void stop();
public final void suspend();
.

}

A thread is declared as a variable of type Thread, for example, as Thread
appletThread. Until the variable has been instantiated, it will have a null
reference.

654 Chapter 11 Applets and Threads

When a thread is in sleep mode, the processor is free to work on other tasks. As a result,
sleeping is a very useful (non) activity for threads to do when not needed.

1i

A thread can be started—for example, appletThread.start(). Don’t
become confused over the start() methods; this one is from the class Thread
and not from the class Applet. After a thread has been started, it automatically
invokes the run() method.

The code of a thread may be executed by ensuring that it is included within
the run() method. The method run() is the only method in the interface
java.lang.Runnable and must be implemented in the applet containing the
thread.

A thread may sleep for a stated number of milliseconds. For example, the
thread currently executing the code contained in the run method would sleep
for one second by including the statement Thread.sleep(1000). The danger
in putting a thread to sleep stems from the fact that a program may be inter-
rupted (for example, by using the Ctrl C keys to abandon program execution),
in which case the thread needs to be cleared from the system. Whenever you use
the class method sleep, you must always provide an exception handler should
an interrupt exception occur.

A thread may be stopped by invoking appletThread.stop(). Don’t become
confused over the stop() methods; this one is from the class Thread and not
from the class Applet.

Program Example_8 is a modification of Program Example_7 and includes
a thread for the running of the applet to allow the Web browser or applet viewer
to run in parallel, and hence process the request to repaint the screen.

Notice that the standard applet method init() has been used to create a
thread and start it running, and destroy()has been used to stop a thread. The
method run() from the Runnable interface has also been overridden.

// program to display a digital clock allowing the calculation of
// the time and displaying the value to run in its own thread of
// execution

import java.applet.*;
import java.awt.*;
import java.util.*;

public class Example_8 extends Applet implements Runnable
{

Thread appletThread;

11.9 Threads 655

Font font = new Font("Monospaced",Font.BOLD,16);

int hours, mins, secs;

// override the init() method to initialize and start
// a thread of execution
public void init()
{

if (appletThread == null)
{

appletThread = new Thread(this);
appletThread.start(); // start from class Thread

}
}

// calculate the time of day, and call the repaint method to
// display the time
public void run() // implemented from the interface Runnable
{

while (true)
{

Calendar time=Calendar.getInstance();

hours = time.get(Calendar.HOUR);
mins = time.get(Calendar.MINUTE);
secs = time.get(Calendar.SECOND);

repaint();

// generate a short pause by letting the thread sleep
try{Thread.sleep(1000);}
catch(InterruptedException i){System.exit(1);}

}
}

// override the destroy() method to stop the execution of the thread
// and nullify the thread
public void destroy()
{

if (appletThread != null)
{

appletThread.stop();
appletThread = null;

}

656 Chapter 11 Applets and Threads

The methods stop() and stop(Throwable) from the class java.lang.Thread have
been deprecated in Java 1.2. Deprecation means that Sun Microsystems, Inc., may not

support these methods in future releases of Java. When the programs containing the stop
method were compiled, the deprecation was flagged as a warning after compilation. All the pro-
grams containing the stop method still ran correctly using the Java 1.2 interpreter.

!

}

// display the time in the applet's window
public void paint(Graphics g)
{

g.setFont(font);
g.drawString(String.valueOf(hours)+":"+

String.valueOf(mins)+":"+
String.valueOf(secs),50,50);

}
}

You are advised to run the program to verify that it does accurately display the
time of day. Because the applet is running in its own thread, the Web browser or
applet viewer can react to the mouse button being pressed over the X to close the
applet window. Closing the applet window will result in the destroy method
being called and the thread of execution being terminated.

Always get into the habit of running an applet in its own thread. You may want
to run more than one applet on a Web page, so concurrent processing becomes
almost mandatory!

Case Study: An Example of Multithreading 657

CASE STUDY

An Example of Multithreading

Statement of the Problem Write a program to display three frames in an applet’s window.
Each frame has a solid black rectangle (that appears as a bar and increases in length with time.
Associated with each frame is a separate thread of execution. The threads are given different
attributes of sleepiness. Some threads may sleep for a long time before doing any active work in
increasing the length of the rectangle; other threads require less sleep and are always adding to
the length of the rectangle.

The time each thread is given to sleep can be calculated as a random number. If the maxi-
mum sleeping period of a thread is 5,000 ms, then a random number generated between 0.0 and
5.0 will scale the time to sleep between 0 and 5,000 ms. You will rarely get three random num-
bers generated with the same value; therefore, you will nearly always create threads that sleep for
longer periods than other threads.

Identification of Classes and Methods
The solution to this problem uses three classes:

■ A class to create a RectangularWindow object from a frame with a method to increment
and draw a solid rectangle.

■ A class to create a GraphicThread that has instance variables of timeAsleep and a
threadFrame, with a method run that implements the Runnable interface. All objects of
this class will execute the run method automatically. Hence, all objects will go through a
period of sleeping, followed by drawing of their extended rectangle in the frame.

■ A class that extends the Applet class. Its function is to instantiate and start the three threads,
and when the applet window is closed, to destroy the three threads. Since the third class is triv-
ial, it will not be discussed further, but implemented directly in the coding section.

Algorithm Development
The constructor and methods for the class RectangularWindow follow.

public class RectangularWindow extends Frame
{

public RectangularWindow(String s);
public void drawInWindow();

}

The UML representation of the constructor is shown in Figure 11.5.
The instance variables of the RectangularWindow class contains the dimensions of the

frame and the dimensions of the rectangle. The width and height of the frame are initialized

658 Chapter 11 Applets and Threads

from the Toolkit methods, and the width and height of the rectangle are based upon percent-
ages of the width and height of the frame.

The horizontal (x-axis) position of a rectangle is fixed as a percentage of the width of the
frame; however, the vertical (y-axis) position of the rectangle with respect to the applet’s win-
dow must be declared as a static integer variable to prevent different frames from being drawn
one on top of another.

The parameter of the constructor is any message that you want to display in the window.

Algorithm for the Constructor
1. set the size of the frame
2. set the location of the frame
3. update the position of the next frame so there is no frame overlap
4. set the background color of the frame

Since this method is responsible for drawing the solid rectangle, there is a need to create a vari-
able of type Graphic and hence the local declaration of

Graphics g = getGraphics();

RectangularWindow

Frame

+RectangularWindow
+drawInWindow

-width
-height
-widthOfFrame
-heightOfFrame
-xLocationOfFrame
-yLocationOfFrame

Figure 11.5 UML representation of the
class RectangularWindow

Case Study: An Example of Multithreading 659

Algorithm for the Method drawInWindow
1. get an instance of a graphic
2. set the graphic to the color black
3. increase the length of the rectangle by the incremental length
4. draw the rectangle at a set position within the frame

import java.awt.*;

public class RectangularWindow extends Frame
{

static final int INCREMENTAL_LENGTH = 5; // size bar increases
static final int WIDTH_OF_BAR = 10; // width of bar

private int width;
private int height;
private int widthOfFrame;
private int heightOfFrame;
private int xLocationOfFrame;

static int yLocationOfFrame = 250; // unique y coordinate of top-LH
// corner for each frame

int lengthOfBar = 0; // initial length of bar

RectangularWindow Graphics

Dimension

Toolkit

Figure 11.6 UML dependencies

660 Chapter 11 Applets and Threads

public RectangularWindow(String s)
{

super(s);

Toolkit tools = this.getToolkit();
Dimension size = tools.getScreenSize();
width = size.width;
height = size.height;

widthOfFrame = (int)(0.9f*width); // 90% width of screen
heightOfFrame = (int)(0.10f*height); // 10% height of

// screen
xLocationOfFrame = (int)(0.05f*width); // 5% width of screen

// set up attributes of a single frame
setSize(widthOfFrame,heightOfFrame);
setLocation(xLocationOfFrame, yLocationOfFrame);
yLocationOfFrame = yLocationOfFrame+heightOfFrame;
setBackground(Color.yellow);

}

public void drawInWindow()
// method to draw a black rectangle in the frame
{

// coordinates of top-LH corner of bar
final int X = (int)(0.01f*widthOfFrame);
final int Y = (int)(0.55f*heightOfFrame);

Graphics g = getGraphics();

g.setColor(Color.black);
lengthOfBar=lengthOfBar+INCREMENTAL_LENGTH;
g.fillRect(X,Y,lengthOfBar,WIDTH_OF_BAR);

}
}

The constructor and method of the GraphicThread class follow.

public class GraphicThread extends Thread implements Runnable
{

public GraphicThread();
public void run();

}

Case Study: An Example of Multithreading 661

Notice that the method run is not available for public use from the class GraphicThread. The
run method cannot be described as private since it must implement a predefined signature
from the Runnable interface. This class contains an integer constant representing the maximum
time a thread will spend asleep (5,000 ms) and an instance variable representing the time asleep.
Since every thread has its own frame, an instance variable must be declared of type
RectangularWindow.

Algorithm for the Constructor GraphicThread
1. calculate the time a thread spends asleep by using a random number generator
2. instantiate a new frame for the thread

Algorithm for the Method run
1. while true
2. thread sleeps predefined time
3. set threads frame visible
4. draw solid rectangle for threads frame

Thread

GraphicThread

-timeAsleep
-threadFrame

+GraphicThread
-run

<<interface>>
Runnable

run()

Figure 11.7 UML representation of the class GraphicThread

662 Chapter 11 Applets and Threads

public class GraphicThread extends Thread implements Runnable
{

static final int DELAY = 5000; // maximum delay of 5 seconds
int timeAsleep; // time a thread spends asleep
RectangularWindow threadFrame; // the frame used by a thread

public GraphicThread()
{

super();

// calculate sleep time for thread
timeAsleep = (int)(DELAY*Math.random());
// instantiate and set the attributes of a frame
threadFrame = new
RectangularWindow("Thread sleeps for "+

String.valueOf(timeAsleep)+" milliseconds");
}

// each thread will be scheduled an amount of time to run by the
// operating system, however some threads will remain asleep during
// their allocated amount of time
public void run()
{

while (true)
{

try{sleep(timeAsleep);}
catch(InterruptedException i){System.exit(1);}
// set frame visible and extend length of rectangle

Math

GraphicThread
RectangularWindow

Figure 11.8 UML dependencies

Case Study: An Example of Multithreading 663

threadFrame.setVisible(true);
threadFrame.drawInWindow();

}
}

}

Testing
Up to now all our desk checking activities have been confined to programs that run in a single
thread. In this example we have three threads to consider. In constructing a table of results we
will show elapsed time over a short period.

During this time period different events of drawing and sleeping will take place for each
thread. We may assume that the time spent asleep for each thread is 1s, 2s, and 3s, respectively,
and the amount of drawing a thread can perform in 1s is just one rectangle.

The test data represents the time spent asleep for each thread. Let thread1 = 1s, thread2 =
2s, and thread3 = 3s.

time interval 0 1 2 3 4 5 6 7 8 9

thread1 (position) 0

asleep 1

lengthOfRectangle 0 5 10 15 20 25 30 35 40 45

thread2 (position) 100

asleep 2

lengthOfRectangle 0 0 5 5 10 10 15 15 20 20

thread3 (position) 200

asleep 3

lengthOfRectangle 0 0 0 5 5 5 10 10 10 15

The coding of the applet used to test the methods in the classes RectangularWindow and
GraphicThread follows:

// applet to demonstrate three threads of execution;
// each thread makes different rates of progress in drawing a
// solid rectangle in its own window;
// the thread given less time to sleep will draw the longest
// rectangle compared with the thread that sleeps for longer periods
// of time

664 Chapter 11 Applets and Threads

import java.applet.*;

public class Example_9 extends Applet
{

GraphicThread firstThread, secondThread, thirdThread;

// override init() method to instantiate and start three threads
public void init()
{

firstThread = new GraphicThread();
secondThread = new GraphicThread();
thirdThread = new GraphicThread();

firstThread.start();
secondThread.start();
thirdThread.start();

}

// override destroy() method to stop the three threads running
public void destroy()
{

firstThread.stop();
secondThread.stop();
thirdThread.stop();

}
}

Applet

Example_9 GraphicThread

Figure 11.9 UML Dependencies

Case Study: An Example of Multithreading 665

A screen shot from the running applet follows. Once again, we recommend that you run this
program to gain a better insight into the functionality of threads. If you edit the program so that
none of the threads sleep, you will get an idea of how your operating system schedules the run-
ning of many threads.

Threads are not unique to applets. The following application program uses the classes
RectangularWindow and GraphicThread to demonstrate the same functionality as the previ-
ous applet. Notice that despite a radio-button component being used in a modal form, it cannot
block the running of the three graphic threads since they are scheduled to run independently of
the application program. Only when the radio button is pressed will the remainder of the code
that follows the statement endProgram.showradioButtons() be executed. The remainder of
the code in the application then kills off the three graphic threads.

666 Chapter 11 Applets and Threads

// application to demonstrate three threads of execution;

public class Example_10
{

static public void main(String[] args)
{

String[] quit = {"EXIT PROGRAM"};

WindowPane screen = new WindowPane();
screen.showWindowPane();
RadioButtons endProgram = new
RadioButtons(screen,"What next?",quit);

GraphicThread firstThread = new GraphicThread();
GraphicThread secondThread = new GraphicThread();
GraphicThread thirdThread = new GraphicThread();

firstThread.start();
secondThread.start();
thirdThread.start();

endProgram.showRadioButtons();

firstThread.stop();
secondThread.stop();
thirdThread.stop();

}
}

A screen shot of the program running follows.

Case Study: An Example of Multithreading 667

Using the RectangularWindow class and the GraphicThread class for reference:

(1) Create a Circle class that contains a constructor to set the coordinates of the center of the circle,
set the fill color of the circle, and initialize the radius of the circle. The class also contains a method
to draw the circle. Every time the method to draw the circle is called, the radius of the circle is
increased by a small incremental amount, up to an upper limit. When the upper limit for the radius
of the circle has been reached, the radius of the circle is decreased by a small incremental amount
down to a lower limit. The effect is to re-draw a circle many times so that it appears to pulsate
between the lower and upper limits of its radius.

(2) Create a GraphicThread class that instantiates a Circle class, and will allow the circle to pulsate.

(3) Write a test program to display pulsating circles of different colors in different parts of the screen.

NOW DO THIS

668 Chapter 11 Applets and Threads

11.10 Animation

One of the simplest techniques for animation is to display an animated GIF
image from an applet. The disadvantage of embedding an animated GIF into an
applet lies in the amount of flicker you get from the picture as the screen is
redrawn. It is better to use animated GIFs directly in HTML files rather than
trying to use them in applets.

You may recall seeing children’s books in which a series of single pictures are
drawn on, say, the odd-numbered pages of the book, with each picture differing
very slightly from the previous picture. By rapidly thumbing through the pages,
from the first page to the last, you can get the illusion of movement or anima-
tion of the drawn figures. Because applets and applications are capable of dis-
playing images, it is possible in Java to display a sequence of images, one after
another, to form an animation.

The technique involves the sequence of displaying an image, followed by
erasing the image, and displaying a similar image to the first apart from some
minor alteration to the image. The technique is repeated until all images have
been shown.

This technique is fine in theory, but very disappointing to implement in
practice since it suffers from a considerable amount of flicker caused by an
image being cleared from the screen and a new image being drawn on the
screen.

Let us tackle the problem of flicker by looking at a worked example. We will
store a series of GIF images, 16 images to be precise, in an array, and display
each image from the array. The first four images are shown in Figure 11.10. The
image is the 3-D word Java, produced using a drawing package, with each image
being saved as a GIF file. Notice that each image differs slightly from the previ-
ous image because the image is being tilted forwards.

The code you may intuitively write to display the images on the screen
might follow the same technique as for displaying the digital clock. You override
the paint method with the code required to display each image, and you call
the repaint() method from within an overridden run() method. Your code
might look something like this.

public void paint(Graphics g)
{

// draw image on the applet’s screen
g.drawImage(gifImages[index],0,0,width,height,this);

}

Note that index is a class variable that is incremented from within the run()
method. The run() method may be overridden with the following code.

11.10 Animation 669

Figure 11.10 A selection of GIF images used in the animation in Program Example_11

image java0.gif

image java1.gif

image java2.gif

image java3.gif

public void run()
{

Graphics g = getGraphics();

while (true)
{

repaint();
index++;
index = index % 16;

try{appletThread.sleep(100);} catch (InterruptedException e){}
}

}

The code will produce an animation; however, there is a discernible flicker
between the drawing and clearing of the images. The call to repaint() auto-
matically calls the method update(). The update() method clears the area of
the screen in use and then automatically calls the paint() method. The

670 Chapter 11 Applets and Threads

update() method is the method responsible for the flicker; you perceive an
image, followed by a blank screen, followed by another image.

A trick to reduce flicker is not to use repaint() but to override the
paint() method with a technique called graphical double-buffering. The
paint() method is then called directly.

Graphical double-buffering uses two drawing areas—one off screen and the
other on the applet’s screen. All erasure of images and drawing of images is per-
formed off screen; the created off-screen image is then drawn on the applet’s
screen. With this technique there is no erasure of images on the applet’s screen;
hence, flicker is reduced. The technique requires two instance variables being
declared, one to hold the image off screen and one to hold the graphics off
screen. For example:

Image offScreenImage;
Graphics offScreenGraphics;

During the applet’s initialization phase, both these objects can be initialized
with values. For example:

offScreenImage = createImage(width,height);
offScreenGraphics = offScreenImage.getGraphics();

where createImage(width, height) from the Component class will create
an image that may be used off screen. The getGraphics() method returns a
Graphics object that can be used for drawing into off-screen images.

The paint() method is overridden as follows.

public void paint(Graphics g)
{

int topLeftX=75; // abscissa of top left-hand corner of image
int topLeftY=40; // ordinate top left-hand corner of image

int imageWidth = gifImages[index].getWidth(this);
int imageHeight = gifImages[index].getHeight(this);

// erase previous image from off screen graphics area
offScreenGraphics.setColor(Color.white);
offScreenGraphics.fillRect(0,0,width,height);

// draw next image in off screen graphics area
offScreenGraphics.drawImage(gifImages[index],

topLeftX,topLeftY,imageWidth,imageHeight,this);

// draw image on the applet’s screen
g.drawImage(offScreenImage,0,0,width,height,this);

}

11.10 Animation 671

Program Example_11 brings together the points discussed above and demon-
strates animation using the 16 GIF files. Notice that the example combines the
techniques of (1) allowing an applet to run in its own thread, (2) using a multi-
media tracker to prevent partial images being displayed when the images are
being loaded, and (3) using graphical double-buffering to reduce the flicker of
animated images.

// program to demonstrate animation techniques

import java.awt.*;
import java.applet.*;

public class Example_11 extends Applet implements Runnable
{

static final int NUMBER_OF_FRAMES = 16;
static final int TIME_ASLEEP = 100; // 100 milliseconds sleep time

Image[] gifImages = new Image[NUMBER_OF_FRAMES];

int index = 0; // index to gifImages array

int width = 250; // width of offscreen graphics area
int height = 100; // height of offscreen graphics area

Image offScreenImage;
Graphics offScreenGraphics;
MediaTracker tracker;

Thread appletThread;

public void init()
{

// load images into array
tracker = new MediaTracker(this);
for (int index=0; index != gifImages.length; index++)
{

gifImages[index] = getImage(getDocumentBase(),
"java"+index+".gif");

tracker.addImage(gifImages[index],index);
}

try
{

tracker.waitForAll();
}

672 Chapter 11 Applets and Threads

catch (InterruptedException e){}

offScreenImage = createImage(width,height);
offScreenGraphics = offScreenImage.getGraphics();

}

public void paint(Graphics g)
{

int topLeftX=75; // abscissa of top left-hand corner of image
int topLeftY=40; // ordinate top left-hand corner of image

int imageWidth = gifImages[index].getWidth(this);
int imageHeight = gifImages[index].getHeight(this);

// erase previous image from off screen graphics area
offScreenGraphics.setColor(Color.white);
offScreenGraphics.fillRect(0,0,width,height);

// draw next image in off screen graphics area
offScreenGraphics.drawImage(gifImages[index],
topLeftX,topLeftY,imageWidth,imageHeight,this);

// draw image on the applet’s screen
g.drawImage(offScreenImage,0,0,width,height,this);

}

// create new thread
public void start()
{

if (appletThread == null)
{

appletThread=new Thread(this);
appletThread.start();

}
}

// override run() method to display the images on the screen
public void run()
{

Graphics g = getGraphics();
while (true)
{

paint(g);
index++;
index = index % NUMBER_OF_FRAMES;

11.11 Restrictions 673

Return to the SketchPad class developed in Chapter 9. You
may recall that with this class no re-drawing of the shapes occurred. Modify the
SketchPad class to use a double buffer, draw the shapes on an off-screen
image and redraw from that image.

NOW DO THIS

try{appletThread.sleep(TIME_ASLEEP);}
catch (InterruptedException e){}

}
}

public void destroy()
{

if (appletThread != null)
{

appletThread.stop();
appletThread=null;

}
}

}

The results of this applet are best viewed with the applet running. When the
applet runs, the 3-D word Java appears to take a bow. The screen shot shows
just one image being displayed by an applet viewer.

11.11 Restrictions

When you surf the Web and download documents, you have probably noticed
that your browser literally comes into life with superb text and graphics, dis-
played in brilliant colors, possibly with sound, photographs, videos, and ani-
mated pictures. You now know that the text is based on an HTML script file,

674 Chapter 11 Applets and Threads

It is possible to attach a digital signature to a Java Archive (JAR) file, as a means of specify-
ing that the applet(s) contained within the JAR file have trusted code. The Web browser may

then grant special privileges to such applet(s). See your SDK documentation for further infor-
mation.

1i

and the photographs and some animation are likely to come from GIF files.
However, there may be a number of applets that have been downloaded and are
running on your computer.

As mentioned earlier in this chapter, to avoid the possibility of a down-
loaded applet causing havoc on your computer, there are certain restrictions
imposed on what an applet is allowed to do.

Different Web browsers and applet viewers may impose different security
restrictions on applets. Applets downloaded over the network must be consid-
ered as untrusted code, and you should assume that any applet will be restricted
by the following security measures. Applets that are considered to be untrusted
code are subject to stringent restrictions. They cannot do the following:

■ Access the local file system on your computer.

■ Perform networking operations.

■ Use system facilities.

■ Use certain AWT facilities.

■ Access certain system properties.

■ Create threads or access threads or thread groups outside of the thread group
in which the applet is running.

■ Access certain classes and packages.

When an applet is loaded from the file system on your computer, it is assumed
that the code is likely to be more trustworthy than an anonymous downloaded
applet over the network. In this case, Web browsers and applet viewers may
relax some of the restrictions listed above.

11.12 Sound and Images with Applications

Within this chapter the use of audio files and image files has been confined to
applets. However, the audio visual interface contains the class Audio to allow
the playing of AU and WAV files, and also contains the class FilmStrip to
allow the viewing of JPEG and GIF images on the screen. As you have experi-
enced, these two classes have been used extensively with Java applications.

11.12 Sound and Images with Applications 675

Sound
A new method in the class java.applet.Applet enables applications as well
as applets to create AudioClips. The signature of the class method is:

public static final AudioClip newAudioClip(URL url);

You may wonder how you transform the filename of an audio file into a URL.
The class File in the package java.io contains a method that converts a file-
name into a URL; the signature of the method is:

public URL toURL();

The method throws a MalformedURLException. For example, to convert the
filename—represented as a string—of an audio file into a URL we would code:

File f = new File(filename);
try{myUrl = f.toURL();}
catch (MalformedURLException e}

The creation of an AudioClip from a sound file is achieved by writing:

AudioClip sound = Applet.newAudioClip(myUrl);

The audio clip can use any of the methods described in this chapter for playing
a sound—loop(), play(), and stop().

When you are creating a class, such as Audio, for playing sounds, it is good
practice to have the sound play in its own thread. For example, the Audio class
extends the Thread class and overrides the run method from the Thread class
to play the audio clip.

Images
The techniques of displaying images in applications are the same as we have
encountered in this chapter for displaying images within applets.

In the Toolkit class of the awt package you will find two getImage meth-
ods that use either a string filename or a URL as an argument. Both methods
return an Image object.

The FilmStrip class uses the methods of the MediaTracker class to load
all the image objects before displaying any of them.

// load all images into the array visual before displaying them
Toolkit tools = parent.getToolkit();
MediaTracker tracker = new MediaTracker(this);
for (int index=0; index != numberOfFrames; index++)
{

// convert filename to URL

676 Chapter 11 Applets and Threads

File file = new File(filenames[index]);
if (! file.exists())
{

.

.
parent.closeWindowAndExit();

}

try{url = file.toURL();}
catch (MalformedURLException e)
{

.

.
parent.closeWindowAndExit();

}

visual[index] = tools.getImage(url);
tracker.addImage(visual[index],index);

}
try{tracker.waitForAll();}
catch (InterruptedException e){}

To reduce flicker when showing a sequence of images, the FilmStrip class also
utilizes the technique of double buffering. It is necessary to first create an off-
screen image using the createImage method from the Container class. An
off-screen graphics object is then created from this off-screen image. Individual
images can then be drawn on the off-screen graphics object using the
drawImage method from the Graphics class in the awt package. Finally, the
completed off-screen images are painted.

11.13 Conclusion

In Chapter 2 it was stated that by the time that you have read through this book
you would be able to understand how the avi package was written, and you
would have enough knowledge of the Java language to write your own package
for input and output.

The avi package contains nine classes. In this chapter you have learned how
to play audio sounds and display images. These techniques are at the heart of
the Audio and Filmstrip classes. In Chapters 8 and 9 you learned how to cre-
ate a WindowPane class and add to the window components to represent
CheckBoxes, a WritingPad, a DialogBox, and RadioButtons. These are
some of the basic ingredients of the audio-visual interface.

The avi also contains other classes such as the Memo, Slider, and Timer.
However, these use similar techniques to those already learned.

Summary 677

Your knowledge of the Java language, and the construction of object-
oriented programs has come a long way since you first opened the book and
started to understand this modern-day approach to programming. However,
this is only the beginning of your programming experience with Java. Every year
the number of packages that is added to the language continues to grow. The
diversity of applications for Java will also continue to grow as man’s ingenuity
with computers continues to increase.

In your quest to learn more about Java, we hope this book has given you a
foundation that will allow you to continue to expand your knowledge of pro-
gramming over the next few years.

S U M M A R Y

■ The Internet is an international network of computers in which the structure
permits networks within networks. The Internet refers to the hardware
needed to support the linking together of many computers to form networks
and the linking of the networks together.

■ There are various resources available on the Internet—E-mail, File Transfer
Protocol (FTP), Gopher, Telnet, and Hyper-Text Transfer Protocol (HTTP).

■ The World Wide Web (WWW) is a distributed information service on the
Internet that uses browsers to interpret documents written in Hyper-Text
Mark-up Language (HTML).

■ An HTML script file may contain references to text, images, video clips, and
applets.

■ A Uniform Resource Locator (URL) is a means of addressing any site on
the Web.

■ An applet is a program designed to be run by a Java-enabled Web browser or
applet viewer.

■ There are two parts to creating an applet. The first is the applet code itself,
which is compiled using a Java compiler. The second is an HTML file that
contains a call to the applet, together with any parameters that the applet
requires. The HTML file is executed by the Web browser of applet viewer.

■ The Applet class contains a set of methods that may be overridden by a sub-
class of the Applet class. The most important standard methods to override
are init(), start(), stop(), and destroy().

678 Chapter 11 Applets and Threads

■ There is no concept of a main method in an applet as there is with an appli-
cation. Control of the computer must be made through automatic calls to the
standard methods of the applet.

■ Applets run in either a Web browser or an applet viewer; they make use of
such facilities as (1) the browser’s window, to implement GUIs and draw
graphics, (2) the browser’s event handling of its window, and (3) the
browser’s interface for controlling the applet.

■ Both HTML files and applets may be used to incorporate multimedia into
Web-based documents.

■ An array can have more than one dimension.

■ A two-dimensional array may be thought of as a repetition of one-dimensional
arrays.

■ Arrays of any dimension may be initialized at the point of declaration.

■ An applet may set up listeners to control input and output in a graphical user
interface.

■ The position of a mouse may be used in conjunction with an image map to
trigger other media being shown or played.

■ A thread is a single sequential flow of control. Since the Web browser or
applet viewer controls the applet, it is important for an applet to have at
least one thread to run in to allow the browser time to perform useful work,
such as implementing repaint.

■ A thread has a life cycle—it is created, starts, runs, and enters any of sev-
eral states. In these states the thread might be ready to be run, be asleep,
suspended, waiting, or blocked, and eventually it must die.

■ An applet that uses threads must ensure that the functionality of the applet
is controlled from within the run method.

■ Images may be animated within applets. To ensure flicker-free animation, do
not clear the image on the browser’s drawing surface. Instead, clear the
image behind the scenes by using double buffering.

■ To prevent images from being partially shown during the loading process, use
the MediaTracker class to monitor the loading of the images.

■ Applets that are downloaded to a local machine have severe restrictions of
access imposed upon them as a means of protecting the host machine from
untrusted code.

■ Applets that have been loaded from a local machine are regarded as being
trustworthy and are subject to less stringent restrictions.

Review Questions 679

Review Questions
True or False

1. A Web browser interprets an HTML script file.

2. An applet does not require an HTML script file in order to run.

3. A Web browser and an applet viewer have the same functionality.

4. You must override the standard methods init(), start(), stop(), and destroy()
in an applet before it can be executed.

5. There is no main method in an applet.

6. Data stored in a vector may be accessed the same as data stored in a two-dimensional array.

Short Answers

7. What is the Internet, and how does it differ from the Word Wide Web?

8. Describe any three resources on the Internet.

9. What is hypertext, and how does it differ from hypermedia?

10. What is a HTML script file, and why is it used?

11. Describe three tasks that a Web browser enables you to perform.

12. What is Hyper-Text Transfer Protocol (HTTP)?

13. Discuss the format and purpose of a Uniform Resource Locator (URL).

14. What is the purpose of the parameters width and height in a HTML applet tag?

15. State two advantages of running an applet in a Web browser or applet viewer compared
with running an application.

16. What is the purpose of NAME and VALUE in an HTML parameter tag?

17. How do you play an audio clip in an applet?

18. Define a two-dimensional array.

19. What is an image map?

20. Why is it important for an applet to run in its own thread?

21. Discuss briefly the life cycle of a thread.

22. What is the major cause of flicker in image animation when applets are used?

23. Discuss graphical double buffering.

24. What is the purpose of a MediaTracker object?

25. State any three limitations imposed upon an applet that is downloaded from the Web
to a local computer.

680 Chapter 11 Applets and Threads

Exercises
26. Comment on the error in the following URL—java.sun.com.

27. The following HTML script contains errors. What are the errors?

<BODY>
<APPLET> code=Ex_27.java>
</HTML>

28. Desk check the following HTML script file and applet. Use your Java SDK documenta-
tion to look up the classes and methods that are not explained in the chapter.

<HTML>
<BODY>
<APPLET code=Ex_28.class width=500 height=300>
<PARAM NAME=url VALUE="http://www.windows95.com">
</APPLET>
</BODY>
</HTML>

public class Ex_28 extends Applet
{

public void init()
{

try
{

URL site = new URL(getParameter("url"));
getAppletContext().showDocument(site);

}
catch (MalformedURLException m){System.exit(1);}

}
}

What do the HTML script file and applet do? How could you change the value of the
URL without having to edit and recompile the applet?

29. Desk check the following code. Explain any errors that you find.

public class Ex_29 extends Applet
{

String name;

public void paint()
{

Font font = new Font("Monospaced, Font.ITALIC, 36);

http://www.windows95.com

Exercises 681

setFont(font);
setBackground(yellow);
setColor(red);
drawString(name);

}
}

30. Rewrite the applet in Question 29, so that it is error free; supply a value for the variable
name from the parameter list in the corresponding HTML script file.

31. Modify your program in Question 30 so that a value for the variable name can be input
at the time of running the applet.

32. Suppose the value of the String variable source is “dialtone” and the AU sound file
dialtone.au is stored in the same directory as the applet containing the following
statements:

AudioClip sound = getAudioClip(getCodebase(), souce+"au");
sound.play();

Why doesn’t the applet make a sound when it is executed? (This is a very simple error,
but one that is very easy to make!)

33. Use the data from Figure 11.4 to determine the values of the following expressions.

rainfall[3][8]; rainfall[0][11]; rainfall[1][5].

Use Figure 11.4 to determine the value of sum after the following code is executed.

int sum = 0;
for (int column=0; column != 3; column++)
{

for (int row=0; row != 4; row ++)
sum = sum + rainfall[row][column];

}

34. Figure 11.11 indicates the strength of the sun protection factor that you should use in
your sun-block cream to protect against harmful UV radiation.

1 2 3 4

0..2 3 2 2 1

2..4 6 4 3 2

4..7 11 8 5 4

7..9 14 10 7 5

9+ 18 12 8 7

uv Index range category of skin

Figure 11.11 Table showing Recommended Sun Protection Factor

682 Chapter 11 Applets and Threads

Write an applet to store the contents of this table in a two-dimensional array, input the
type of skin and a value for the current UV index, and display the sun protection factor
that you should use to protect against UV radiation under those conditions.

35. Comment on the errors in the following applet. Rewrite the code using a thread to con-
trol the repainting of the screen.

public class Ex_35 extends Applet
{

Thread appletThread;
int length = 1;

public start()
{

while (true)
{

repaint();
length++;

Thread.sleep(5000);
}

}

public void paint(Graphics g)
{

g.fillRect(10,50,length,5);
}

}

Programming Problems
36. Improve the digital clock applet. The clock should be given a set of buttons that control

an alarm.

37. Design and write a program to display an analog clock on the screen. Give the clock a
sweeping seconds hand and program the clock to chime every quarter hour as well as
hourly.

38. Design and write a program to display the buttons from a digital telephone. As you dial
a number, play the correct tone. After a six-digit number is input, the program plays
either a ringing or busy tone. Download the tone-dialing sounds from a sound archive of
your choice.

39. Design and write a class for a graphical component that shows the progression of a com-
puter operation such as loading a set of images. Write an applet to show this graphical
component running in parallel with the operation of loading images.

Programming Problems 683

Figure 11.12 Matrix of a minefield

40. (a) Design and write a class that simulates an image of an airplane flying across the
screen. Create an applet containing several airplane objects flying in different direc-
tions across the screen.

(b) Design and write a class to display the attributes of a plane in a separate window
and to be able to modify certain attributes such as the speed and direction of the
plane. When the user points and clicks the mouse-button over a plane, the new
window is activated.

41. A computerized minefield, divided into a 10 � 10 matrix as illustrated in Figure 11.12,
may be considered as an object. Devise a class Minefield containing methods that will
allow you to plot a path through the mines and display your route.

The position of the mines is generated at random. The number of mines is also gen-
erated at random, and will be a value in the range 1 to 10. A person plotting a path
through the minefield is allowed to input pairs of coordinates of a path. The computer
generates the starting position at any column in row 9 of the matrix, and the only legal
move is to any adjacent cell in the matrix. The idea behind the simulation is to trace a
path through a minefield without stepping on a mine, and to finish at the northern
perimeter of the matrix. Only at the end of the simulation should the computer reveal
the position of the mines.

Write an applet to test the instance methods of the class by simulating tracing a path
though the minefield.

684 Chapter 11 Applets and Threads

42. Design and write your own space-invaders game. Control a gun sight by moving the
mouse over the enemy space-craft to zap the invaders. Invader space craft should be gen-
erated at random intervals and at random positions on the screen. Display on the screen
the number of seconds remaining before the game finishes and the number of invader
space-craft zapped. You might also allow different levels of difficulty.

This problem gives you plenty of opportunity to experiment with sounds and graph-
ics. Remember to use threads in this problem.

43. Write a computer program to play the game of Tic-Tac-Toe (also known as Noughts
and Crosses) against the computer. Develop your answer around such classes as a
Board, a Square, a Token, a Move, and a Game. Use a mouse pointer to choose a square
on the board. In this problem, look at the possibility of displaying a square on a canvas.
Study the Canvas class in your Java documentation.

C H A P T E R 12

Sorting, Searching,
and Dynamic Data
Structures
This final chapter is optional.

The chapter provides an introduction to a number of sorting and searching
algorithms and dynamic data structures you may find useful when you write com-
puter programs. The approach we take is to cover how to implement some impor-
tant algorithms and data structures “from scratch” and how to use Java’s built-in
predefined implementations of algorithms and data structures. As computer stu-
dents you need to understand both.

Sorting and searching are two of the most common activities performed on
data with computers. In this chapter we not only see how to design and code a
sorting algorithm—the selection sort, we also see how to use some of Java’s
built-in sorting routines. A similar approach is taken with the topic of searching,
where we code our own sequential search and learn how to use the library’s
binary search. We also analyze all of these algorithms with respect to their exe-
cution efficiency.

One of the most versatile ways to structure data for computer processing is
to link related data together. In this chapter we learn how to implement linked
lists in Java, building our own generic linked list ADT. We also see how to use
one of the Java util package’s built-in data structures, the Stack. By the end
of the chapter you should have an understanding of the following topics.

685

686 Chapter 12 Sorting, Searching, and Dynamic Data Structures

■ Writing a sorting algorithm.

■ The Sort class, and a comparison of the efficiencies of its algorithms.

■ Writing a searching algorithm.

■ The BinarySearch class, and a comparison of the efficiencies of its
algorithms.

■ A linked list dynamic data structure.

■ The Stack class.

12.1 Sorting

There is a basic requirement when storing data to keep the values organized by
some form of relationship. You can imagine the problems encountered if the
entries in a telephone directory were not sorted into alphabetical sequence by
the names of the telephone subscribers. Attempting to find the name and num-
ber of a subscriber could prove to be very time-consuming since the entries in
the telephone directory would appear at random.

If the data have been sorted on the surname of the subscriber into an alpha-
betical sequence in the telephone directory, you can simply turn the pages in the
directory to match the first few letters of the surname, then perform a one-by-
one name search through several entries to find the name you are looking for.
Listed against the name will be the telephone number and address of the person
you want to call.

Sorting is one of the techniques used to organize data. Despite there being
numerous sorting techniques available for the programmer to use, we will con-
sider just one of the simplest sorting techniques to implement on the computer.
The first sorting technique we will examine is the selection sort.

Figure 12.1 illustrates the movement of integers in a one-dimensional array,
when a selection sort is used to place the integers into ascending order (lowest
to highest values). The contents of the cells from 0 to 4 are inspected for the
largest number (18), which is swapped with the number in cell 4. The contents
of the cells from 0 to 3 are inspected for the largest number (15), which is
swapped with the number in cell 3. The contents of the cells from 0 to 2 are
inspected for the largest number (13), which is swapped with the number in cell
2. The contents of the cells from 0 to 1 are inspected for the largest number (8),
which is swapped with the number in cell 1. When only the contents of cell 0
remain to be inspected, the numbers are assumed to have been sorted into
ascending order.

To generalize, if N represents the number of integers to be sorted in the cells
of an array from subscripts 0 to N � 1, the largest number in the cells sub-
scripted 0 to N � 1 is found and swapped with the number in cell N � 1. The
process is repeated with N being decreased by 1 each time until N = 0. The
name of this approach is based on the idea that we select the largest remaining
number and swap it into its correct location.

12.1 Sorting 687

0

1 7

2 15

3 8

4 13

7

18

0 13

1 7

2 8

3 15

4 18

0 8

1 7

2 13

3 15

4 18

0 7

1 8

2 13

3 15

4 18

8

18

N = 5 N = 3 N = 2 N = 1N = 4

8

15

0

1

2

3

4

7

18 13

Figure 12.1 A selection sort

Although the selection sort can be implemented as a single method, it is
clearer if the implementation is based on two methods. The first method
positionOfLargest will return the subscript of the largest number in an array
numbers of size limit.

The selection sort algorithm has been coded as class methods within the
class named SortingAlgorithms. The method selectionSort calls the
method positionOfLargest to find the largest number in the N-element
array, where N is equal to size. This number is then swapped with the number at
the end of the array. The process is repeated for N � 1 elements, then N � 2
elements, and so on, until N is reduced to zero.

Notice that the array to be sorted is a parameter of both methods in the
class. You would expect the sorted array to be returned by the class method
selectionSort, yet inspection of the class method shows that the return type
has been defined as void. You may wonder: How do the sorted values in the
array get returned?

A technique of passing arguments to a called method relates to all those
items of data that are stored by reference. These are strings, arrays, and in fact,
any objects. (Refer back to Figure 2.3, Objects stored by reference, and Figure
5.5, Declaration of an array of integers.) In such circumstances it is the reference
to the object or array that is passed and not the specific values of the object or
array. This technique implies that any changes made to the values of the param-
eters in the called method will result in changes being made to the values of the
corresponding arguments in the calling method. These facts are illustrated in
Figure 12.2, where a reference to an array (the arrowed line) is passed as an
argument to the class method selectionSort. The class method
selectionSort changes the values in respective cells of this array, and conse-

688 Chapter 12 Sorting, Searching, and Dynamic Data Structures

call to selectionSort from main

Argument Pre-call Post-call
values values

18 7
7 8

data 15 13
8 15
13 18

method: selectionSort
return: void

Parameter Initial Final
values values

data

Figure 12.2 Passing an array by reference

quently the original values in the array associated with the main method have
changed.

The following code shows the class SortingAlgorithms, which includes
the selection sort:

public class SortingAlgorithms
{

static int positionOfLargest(int[] data, int limit)
// method to return the position of the largest item
// in the data with bounds 0..limit
{

int largest = data[0];
int indexOfLargest = 0;

for (int index=1; index <= limit; index++)
{

if (data[index]> largest)
{

largest = data[index];
indexOfLargest = index;

}
}

return indexOfLargest;
}

public static void selectionSort(int[] data)
// method to sort the contents of a data into ascending order
{

int temporary;
int position;
int size=data.length;

12.1 Sorting 689

for (int index=size-1; index > 0; index--)
{

position=positionOfLargest(data, index);

// swap numbers
if (index != position)
{

temporary = data[index];
data[index] = data[position];
data[position] = temporary;

}
}

}
}

Program Example_1 illustrates how an array of numbers is passed by refer-
ence to the class method selectionSort. Notice in this program that the val-
ues of the array have been displayed before and after the call to the method
convert. Notice also that another class method has been used to display the
contents of the array. A method for displaying the data was used to reduce the
amount of repeated coding that would otherwise be necessary.

// program to demonstrate the selection sort

import avi.*;

class Example_1
{

static Window screen = new Window("Example_1.java");

// method to display the contents of an array
static void displayData(int[] data)
{

for (int index=0; index != data.length; index++)
screen.write(data[index]+"\t");

screen.write("\n");
}

public static void main(String[] args)
{

int[] data = {18,7,15,8,13};

screen.showWindow();
screen.write("numbers before being sorted\n");
displayData(data);

690 Chapter 12 Sorting, Searching, and Dynamic Data Structures

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_1.java date: 7/22/2000 time: 2:24:3

===

numbers before being sorted
18 7 15 8 13
numbers after being sorted
7 8 13 15 18

// call bubble sort
SortingAlgorithms.selectionSort(data);

screen.write("numbers after being sorted\n");
displayData(data);

}
}

You are advised to desk check program Example_1 using the test data illus-
trated in Figure 12.1.

Contents of the log file from the program being executed are shown below.

In attempting to compare the efficiency of two algorithms for solving the
same problem—in this case, sorting—we want to see which algorithm is more
time efficient. Intuitively, you might want to code both algorithms and perform
a comparison on the time it takes to run both programs. However, there are
problems with this approach:

■ How should the algorithms be coded? In comparing the running times, we
are comparing the implementations of the algorithms and not the algorithms.

■ What computer should you use? The operations used by one algorithm
might run faster on one machine than on another.

■ What data should be used to compare the two algorithms? The values of the
data will influence the timings of the algorithms. Ideally our analysis should
be independent of specific data.

To analyze algorithms independently of specific implementations, computers or
data, the time requirement of an algorithm is taken to be a function of the size
of the problem. Size, in this case, is measured as the number of items in an array.
We need to establish how quickly an algorithm’s time requirement grows as a
function of the size of the problem. For example, making the statement that
algorithm A requires time proportional to N 2 is exactly the kind of statement that
characterizes the inherent efficiency of an algorithm; it is independent of such
factors as implementations, computers, and specific data.

12.2 Class Java.util.Arrays—Sort 691

In analyzing the efficiency of the selection sort, we will look at the number
of comparisons on the data being sorted.

If there are N items of data, then:

The number of comparisons on the first pass through the array is N � 1.
The number of comparisons on the second pass through the array is N � 2.
The number of comparisons on the third pass through the array is N � 3.
.
.
The number of comparisons on the N � 1th pass through the array is 1.

The selection sort algorithm is blind to the original order of the numbers. The
number of comparisons, regardless of the order of the numbers, will be

You can verify this equation in any discrete mathematics textbook. If we omit
the fractional part of this expression, we may conclude that the selection sort has
an order of magnitude of N 2 comparisons. This is referred to as a quadratic algo-
rithm. The time it takes to sort an array will be proportional to the amount of
work the computer must do to compare and swap data. For example, doubling
the size of the input causes a quadrupling of the time it takes to sort the data.

The algorithm is suitable for sorting only a small amount of data; otherwise,
the time taken to complete the sorting algorithm, proportional to N 2, will
become lengthy.

12.2 Class Java.util.Arrays—Sort

The Java library contains two efficient sorting algorithms for sorting large vol-
umes of data. These are a tuned version of the Quicksort for sorting data of a
primitive type, such as integers; and a modified version of the Mergesort for sort-
ing objects, such as strings. A description of both of these algorithms is beyond
the scope of this chapter; they are not normally covered in introductory courses
to programming. You will certainly learn more about them if you continue your
study of computing. Meanwhile, since both algorithms are built into the
Arrays class in the predefined Java util package, you can use these algorithms
without completely understanding all of their details. Such is the beauty of
abstraction. Note that the Arrays class is not used for creating arrays—you
already learned how to do that in Chapter 5. The Arrays class simply provides
methods for manipulating arrays.

The efficiency of the tuned Quicksort is of the order of n * log2(n); and for
the modified Mergesort the efficiency is also n * log2(n), where n represents the
numbers of items of data to be sorted. These expressions of the efficiencies of

N N i N N N N
N

−() + −() + + = −() = () − ()
−

∑1 2 1 1 2 2 22

1

1
L / / /

692 Chapter 12 Sorting, Searching, and Dynamic Data Structures

the algorithms represent the average case and not the worst case scenarios. In
the case of the Mergesort, if the original data is almost sorted, then the effi-
ciency of the Mergesort approaches n.

If you inspect the documentation for the class Arrays, found in the package
util, you will notice that all the class methods are overloaded to account for all
the primitive data types, and they are overloaded to account for objects. The
method used to perform sorting is simply called sort. If it is passed an array of
primitive data types, it will use Quicksort; if it is passed an array of objects, it
will use Mergesort.

Program Example_2 is a repeated version of program Example_1, however,
the selection sort is replaced by the Java library version of the Quicksort.

// program to demonstrate the use of Quicksort from the class
// java.util.Arrays

import avi.*;
import java.util.Arrays;

class Example_2
{

static Window screen = new Window("Example_2.java");

// method to display the contents of an array
static void displayData(int[] data)
{

for (int index=0; index != data.length; index++)
screen.write(data[index]+"\t");

screen.write("\n");
}
public static void main(String[] args)
{

int[] data = {18,7,15,8,13};

screen.showWindow();
screen.write("numbers before being sorted\n");
displayData(data);

// call Quicksort
Arrays.sort(data);

screen.write("numbers after being sorted\n");
displayData(data);

}
}

12.2 Class Java.util.Arrays—Sort 693

N N2 Nlog
2
N

Selection sort Quicksort

32 1024 160

64 4,096 384

128 16,384 896

256 65,536 2,048

512 262,144 4,608

Figure 12.3 Average-case efficiency of sorting algorithms

If you run this program, you will find the results are identical to those from
Example_1.

The Quicksort algorithm works more efficiently for some arrays than it does
for others. The best time for a Quicksort is proportional to the order of n * log2n
where n is the number of elements to be sorted.

The worst results occur when the array is already sorted or is in reverse
order—the efficiency drops to the order of N 2. In such cases, the time to per-
form the Quicksort is no faster than the time to perform the selection sort since
the efficiency has deteriorated to the order N 2. Figure 12.3 illustrates the com-
parative average-case efficiency of the selection sort and the Quicksort for
increasing values of N. Notice that the time to sort identical arrays is propor-
tional to N 2 and N log2 N, respectively, and increases dramatically for the selec-
tion sort as the number of elements N increases.

So far we have concentrated on sorting numbers; however, it is also possible
to sort objects including strings. In fact, the solution to this problem is a great
example of the power of using the Java interface construct, which was intro-
duced in Chapter 6. Upon inspecting the overloaded sort methods in
java.util.Arrays, you will notice that a set of sort methods explicitly handles
sorting objects.

// program to demonstrate the Mergesort from the class
// java.util.Arrays

import avi.*;
import java.util.Arrays;

class Example_3
{

static Window screen = new Window("Example_3.java");

// method to display the contents of an array
static void displayData(String[] data)

694 Chapter 12 Sorting, Searching, and Dynamic Data Structures

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_3.java date: 7/22/2000 time: 2:33:5

===

Strings BEFORE being sorted

Mowbray Adams Quayle Peters Fogg Jones Rankin Fellows Evans Hewitt Davies

Strings AFTER being sorted

Adams Davies Evans Fellows Fogg Hewitt Jones Mowbray Peters Quayle Rankin

{
for (int index=0; index != data.length; index++)

screen.write(data[index]+"\t");

screen.write("\n\n");
}

public static void main(String[] args)
{

String[] data = {"Mowbray","Adams","Quayle","Peters",
"Fogg","Jones","Rankin","Fellows",
"Evans","Hewitt","Davies"};

screen.showWindow();
screen.write("Strings BEFORE being sorted\n\n");
displayData(data);

// call merge sort
Arrays.sort(data);

screen.write("Strings AFTER being sorted\n\n");
displayData(data);

}
}

Contents of the log file from the program being executed are as follows.

Regardless of the algorithm being used, there will be a need to compare two
items of data and determine which is the largest. The Java coding of this com-

12.2 Class Java.util.Arrays—Sort 695

parison will depend upon the type of data being sorted. For example, if two
items of data A and B are numerical, then the comparisons A<B, A==B, and A>B
will hold for all numerical types. However, if the two items of data are strings,
then a comparison using the > symbol is illegal and the instance method
compareTo from the String class must be used. The need to use two different
statements for comparing numerical data and string data implies that two dif-
ferent versions of the same sorting algorithm must be coded. That might not
seem too bad, but what of objects other than numbers and strings? Suppose you
want to compare two student records or two bank accounts? For every class of
objects you define that you want to sort, you will have to create yet another ver-
sion of the sorting algorithm.

The way around this unacceptable situation is provided by the Java interface
construct. The Comparable interface defined in the java.lang package con-
tains a method, compareTo. Remember what this means—the Comparable
interface does not itself define the method, but it does define the interface of the
method. Any class that implements the Comparable interface must provide its
own code for implementing the method and must follow the method signature
defined in the interface.

The required method signature for compareTo is:

public int compareTo(Object obj)

The associated method description is “Compares this object with the obj
object for order. Returns a negative integer, zero, or a positive integer as this
object is less than, equal to, or greater than the obj object respectively.”

So if you define a class of objects that you wish to pass to a generic sorting
method, define the class so that it implements the Comparable interface. Then,
within the sorting method, you can safely use a method call to compareTo as
needed to perform the sort. If you study the sort methods defined in the Arrays
class, you will see that many of them use this approach.

Consider the following class Telephone, which through its constructor cre-
ates an object containing the name, telephone number, and address of a sub-
scriber to a telephone company.

import java.lang.*;

public class Telephone implements Comparable
{

// instance variables
String name;
String teleNumber;
String address;

// constructor

696 Chapter 12 Sorting, Searching, and Dynamic Data Structures

public Telephone(String person, String number, String home)
{

name = person;
teleNumber = number;
address = home;

}

// implemented method of class Comparable
public int compareTo(Object object)
{

return
(((Telephone)this).name).compareTo(((Telephone)object).name);

}
}

To be able to compare Telephone objects we need to state that the class
implements Comparable and we need to implement the method compareTo
from the interface within the class Telephone. Notice that in the compareTo
method, it is the this object that passed a message to the method that is being
compared with the name. Since the signature of the method indicates that an
object from the superclass Object is passed as an argument, we must cast the
object to the Telephone class, hence the use of ((Telephone)this) and
((Telephone)object). To avoid any confusion, remember the instance vari-
able name is defined as a string; therefore, it is appropriate that the instance
method compareTo, from the class String, is used within the implementation
of the interface’s compareTo method.

Note that if the key had been numeric, it would still have been necessary to
implement the Comparable interface.

A text data file named subscribers.txt, contains the following lines of text.

Mowbray "Ashford 134581" "45 Brookside Avenue"
Adams "Watford 129099" "18 Milestone Road"
Quayle "Perth 12124" "212 Wiltshire Boulevard"
Peters "Glasgow 776543" "113 Flemming Road"
Fogg "Poole 9001" "10 Almond Avenue"
Jones "Ripon 83765" "336 Cornwallis Road"
Rankin "Plymouth 42212" "732 High Street"
Fellows "Hull 496112" "21 Turnpike Boulevard"
Evans "Truro 334466" "433 Lake Street"
Hewitt "Hamble 7854312" "30 Chester Street"
Davies "Bath 8009211" "72 Sherwood Avenue"

where each line of text represents the name, telephone number, and address of a
subscriber to the telephone company. Since spaces are embedded within the
strings for telephone numbers and addresses, it has been necessary to delimit

12.2 Class Java.util.Arrays—Sort 697

Mowbray Ashford 134581 45 Brookside Avenue

Adams Watford 129099 18 Milestone Road

Quayle Perth 12124 212 Wiltshire Boulevard

Peters Glasgow 776543 113 Flemming Road

Fogg Poole 9001 10 Almond Avenue

Jones Ripon 83765 336 Cornwallis Road

Rankin Plymouth 42212 732 High Street

Fellows Hull 496112 21 Turnpike Boulevard

Evans Truro 334466 433 Lake Street

Hewitt Hamble 7854312 30 Chester Street

Davies Bath 8009211 72 Sherwood Avenue

0

1

2

3

4

5

6

7

8

9

10

Figure 12.4 A one-dimensional arrays containing Telephone objects

these strings with quotes. Failure to delimit these strings would mean that the
embedded spaces would be used as token delimiters in the StreamTokenizer
class that is used to process the text file.

The subscribers.txt file is to be read, and its contents transferred as
objects of type Telephone to the one-dimensional array depicted in Figure 12.4.

The following program reads the file line by line and creates objects of type
Telephone. Each object, after it has been instantiated, is stored in a respective
cell of the one-dimensional array. After the array has been filled with 11
Telephone objects, the contents of the array are sorted on the subscribers’
names as keys; then the contents of the sorted array are displayed.

The overloaded sorting method has the following signature:

public static void sort(Object[] array);

where array is a one-dimensional array containing the data to be sorted.

698 Chapter 12 Sorting, Searching, and Dynamic Data Structures

// program to demonstrate the Mergesort from the class
// java.util.Arrays, on keys of name from the Telephone class

import avi.*;
import java.io.*;
import java.awt.FileDialog;
import java.util.*;

class Example_4
{

static Window screen = new Window("Example_4.java");
static final int SIZE_OF_ARRAY = 11;

// method to display the contents of an array
static void displayData(Telephone[] data)
{

for (int index=0; index != data.length; index++)
screen.write(data[index].name+"\t\t"+

data[index].teleNumber+"\t"+
data[index].address+"\n");

screen.write("\n");
}

public static void main(String[] args)throws Exception
{

Telephone[] data = new Telephone[SIZE_OF_ARRAY];
String person;
String number;
String home;

screen.showWindow();

FileDialog inputFile = new
FileDialog(screen,"",FileDialog.LOAD);
inputFile.show();

String directory = inputFile.getDirectory();
String filename = inputFile.getFile();

FileReader file = new FileReader(directory+filename);
StreamTokenizer inputStream = new StreamTokenizer(file);

int index = 0;
int tokenType = inputStream.nextToken();
while (tokenType != StreamTokenizer.TT_EOF)

12.2 Class Java.util.Arrays—Sort 699

{
person = inputStream.sval;
inputStream.nextToken();
number = inputStream.sval;
inputStream.nextToken();
home = inputStream.sval;

data[index] = new Telephone(person, number, home);
tokenType = inputStream.nextToken();
index++;

}

file.close();

screen.write("Records BEFORE being sorted\n\n");
displayData(data);

// call merge sort
Arrays.sort(data);

screen.write("Records AFTER being sorted on name as key\n\n");
displayData(data);

}
}

Here is a screen shot from the running program:

700 Chapter 12 Sorting, Searching, and Dynamic Data Structures

Adams Watford 129099 18 Milestone Road

Fogg Poole 9001 10 Almond Avenue

Fellows Hull 496112 21 Turnpike Boulevard

Evans Truro 334466 433 Lake Street

Hewitt Hamble 7854312 30 Chester Street

Davies Bath 8009211 72 Sherwood Avenue

0

1

2

3

4

5

6

7

8

9

10

Ellis

Ellis

Ellis

Key

Ellis > Adams

Ellis > Davies

Ellis < Evans

Comparison

Mowbray Ashford 134581 45 Brookside Avenue

Quayle Perth 12124 212 Wiltshire Boulevard

Peters Glasgow 776543 113 Flemming Road

Jones Ripon 83765 336 Cornwallis Road

Rankin Plymouth 42212 732 High Street

Figure 12.5 A sequential search on an array of records

12.3 Sequential Search

Imagine that information is stored in an array without any regard to the order of
the keys to the data. For example, the names of telephone subscribers do not
appear in alphabetical sequence. In attempting to search for a key that does not
exist in an array, it is necessary to compare every key in the array before you dis-
cover that the key cannot be found in the array!

When the information held in an array is sorted into search key order, it is
not always necessary to search through the entire array before discovering that a
particular piece of the information is not present. Consider for a moment the
information held in the array depicted in Figure 12.5. Alphabetically, Adams is
before Davies, Davies is before Evans, Evans is before Fellows, and so on.

If we search the contents of the sequential array for the key Ellis, then we
must perform the following comparisons, illustrated in the rightmost column of

12.3 Sequential Search 701

Figure 12.5, before we discover that Ellis is not in the array. Ellis is alpha-
betically greater than both Adams and Davies, and so may be found further on
in the array. Ellis is alphabetically less than Evans; therefore, an entry for
Ellis cannot exist in the array beyond Evans because the names are ordered
into alphabetical sequence. By sorting the contents of the array into alphabetical
order on the name of each person as the key, only three key comparisons are
necessary to discover that Ellis does not exist in the array. If the array was not
sorted by name, then we would have to check every name in the array before we
discovered that Ellis does not exist in the array.

Assume that the records are stored into consecutive array locations from 0 to
10; the following algorithm can be used in searching for a surname in the array.
Note that, in this example, the size of the array is 11 and that the string
compareTo method will return 0, a negative number, or a positive number if the
string parameter is equal to, less than, or greater than the string being used to
invoke the method.

public class SearchingAlgorithms
{

// method to search the records of an ordered array
// for a key; if not found return the size of the array
// otherwise return the position in the array of the match

static public int sequential(Telephone[] array,
int size,String nameKey)

{
int index = 0;
int resultOfComparison;

while (index < size)
{

// compare key with key in array
resultOfComparison=nameKey.compareTo(array[index].name);

// keys match
if (resultOfComparison == 0)

return index;

// search key less than key in array, therefore,
// key cannot exist in array
else if (resultOfComparison < 0)

return size;

// search key greater than key in array, therefore,
// key may exist further down the array

702 Chapter 12 Sorting, Searching, and Dynamic Data Structures

else
index++;

}

// return the size of the array to show that no key
// match was possible
return size;

}
}

The index used to access each cell of the array is initialized to 0, the first cell
position of the array.

Although the value of the index is within the limits of the array [0..10], the
search for the key continues. In the cell being examined, if the key is equal to
the surname, the position in the array of the located record, that is the value of
the index, is returned.

In the cell being examined, if the key is less than the name field, then the
surname cannot exist in the array; the search must stop, and the size of the array
is returned. The size of the array is not a legal subscript to the array; it is used to
signify that no match for the key was found.

In the cell being examined, if the key is greater than the name of the field,
then the surname may exist further down the array, and the value of the index is
increased to retrieve the contents of the next cell.

The algorithm is implemented as the method sequential in the class
SearchingAlgorithms. The following program stores 11 objects containing
names, telephone numbers, and addresses in alphabetical order by surname in a
one-dimensional array. A user is invited to input a name, and the array is searched
for a key match. If the key is found, the corresponding telephone number and
address is output. If the key is not found, an appropriate message is output.

// program to demonstrate the sequential search

import avi.*;
import java.io.*;
import java.awt.FileDialog;
import java.util.*;

class Example_5
{

static final int SIZE_OF_ARRAY = 11;

public static void main(String[] args)throws Exception
{

Telephone[] data = new Telephone[SIZE_OF_ARRAY];
String person;
String number;

12.3 Sequential Search 703

String home;

Window screen = new Window("Example_5.java");
DialogBox inputKey = new DialogBox(screen,"Key?");

String[] reply = {"continue?","quit?"};
RadioButtons buttons = new
RadioButtons(screen,"What next?",reply);

screen.showWindow();

FileDialog inputFile = new
FileDialog(screen,"",FileDialog.LOAD);
inputFile.show();

String directory = inputFile.getDirectory();
String filename = inputFile.getFile();

FileReader file = new FileReader(directory+filename);
StreamTokenizer inputStream = new StreamTokenizer(file);

int index = 0;
int tokenType = inputStream.nextToken();
while (tokenType != StreamTokenizer.TT_EOF)
{

person = inputStream.sval;
inputStream.nextToken();
number = inputStream.sval;
inputStream.nextToken();
home = inputStream.sval;

data[index] = new Telephone(person, number, home);
tokenType = inputStream.nextToken();

index++;
}

file.close();

// call merge sort
Arrays.sort(data);

do
{

// show dialog box
inputKey.showDialogBox();

704 Chapter 12 Sorting, Searching, and Dynamic Data Structures

String key = inputKey.getString();

// call sequential search
int position =
SearchingAlgorithms.sequential(data,data.length,key);

// write value
if (position != data.length)

screen.write("name: "+data[position].name+
"\n"+"telephone number: "+
data[position].teleNumber+"\n"+
"address: "+data[position].address+
"\n\n");

else
screen.write(key+" not found\n\n");

// show radio buttons
buttons.showRadioButtons();

}while (buttons.getNameOfButton().equals("continue?"));
}

}
A screen shot from the running program follows.

12.4 Class Java.util.Arrays—Binary Search 705

12.4 Class Java.util.Arrays—Binary Search

The sequential search algorithm is nice, but it is not the best approach to use
when there is a large amount of sorted data. For example, suppose you wanted
to look up the phone number of a friend in a telephone book. You would not
start at the beginning of the book and look at each name until you either found
your friend or determined that the name and number were not in the book,
would you? Instead, you would jump into the pages at about the place you
thought your friend would be listed, and then you would jump around using
educated guesses as to where you were heading, until you zeroed in on your
friend’s name. The idea of jumping over and eliminating many names in a single
step is the basis behind the binary search algorithm.

The binary search algorithm requires the keys to be sorted prior to the search
and the information to be stored in an array. Suppose we wanted to search the
array shown in Figure 12.6 for the entry Quayle. First the array is divided into
two parts by the midpoint. The midpoint is calculated as (first + last)/2, and in
this example it is assigned to the variable location. The key Quayle is com-
pared with the key at location. Since Quayle > Hewitt, Quayle might be
found in the lower subarray within the bounds (location+1..last) but will defi-
nitely not be found in the upper subarray. We have eliminated half the array
with a single comparison! This process is repeated using only the lower subarray,
with a new midpoint being calculated as (location+1 + last)/2 and assigned to
the variable location. The key Quayle is compared with the key at the new
location. Since Quayle > Peters, Quayle may be found in the lower subarray
within the bounds (location+1..last). We have now eliminated half of the
remaining array. The process is repeated again with a new midpoint being calcu-
lated. Note when a sublist contains an even number of keys, the midpoint may
be taken to be the next lowest key from the center. A match for the key Quayle
exists at location = 9. If the value for first had exceeded the value for last,
then no match would be found for the key. Notice that only three comparisons
are necessary with this approach, compared with 10 comparisons if a serial or
sequential search had been performed.

The binary search algorithm is very important, and it is widely used. It is
provided in the Java utils package in the Arrays class. Upon inspection of the
documentation for the Arrays class, you will find overloaded methods for the
binarySearch algorithm.

The signature of one of the overloaded methods to search for an instance
variable of an object is:

public static int binarySearch(Object[] array, Object key);

Program Example_5 has been rewritten as Example_6 to incorporate the
changes necessary to use the binary search method from the class Arrays.
Program Example_6 is shown as skeletal code, showing the changes that have
been made to Program Example_5.

706 Chapter 12 Sorting, Searching, and Dynamic Data Structures

Adams Watford 129099 18 Milestone Road

Fogg Poole 9001 10 Almond Avenue

Fellows Hull 496112 21 Turnpike Boulevard

Evans Truro 334466 433 Lake Street

Hewitt Hamble 7854312 30 Chester Street

Rankin Plymouth 42212 732 High Street

Davies Bath 8009211 72 Sherwood Avenue

0

1

2

3

4

5

6

7

8

9

10

Jones Ripon 83765 336 Cornwallis Road6

7

8

9

10

9

10

Quayle

Key

Quayle > Hewitt

Comparison

6

Quayle

Key

Quayle > Peters

Comparison

Quayle

Key

Quayle = Qualyle

Comparison

Mowbray Ashford 134581 45 Brookside Avenue

Quayle Perth 12124 212 Wiltshire Boulevard

Peters Glasgow 776543 113 Flemming Road

Jones Ripon 83765 336 Cornwallis Road

Rankin Plymouth 42212 732 High Street

Quayle Perth 12124 212 Wiltshire Boulevard

Peters Glasgow 776543 113 Flemming Road

Mowbray Ashford 134581 45 Brookside Avenue

Rankin Plymouth 42212 732 High Street

Quayle Perth 12124 212 Wiltshire Boulevard

Rankin Plymouth 42212 732 High Street

Jones Ripon 83765 336 Cornwallis Road

Figure 12.6 A binary search for a name in an array

12.4 Class Java.util.Arrays—Binary Search 707

// program to demonstrate the binary search from the class java.util.Arrays

.

.

class Example_6
{

static final int SIZE_OF_ARRAY = 11;

public static void main(String[] args) throws Exception
{

Telephone[] data = new Telephone[SIZE_OF_ARRAY];

.

.

.

// call merge sort
Arrays.sort(data);

do
{

// show dialog box
inputKey.showDialogBox();
String key = inputKey.getString();
Telephone searchKey = new Telephone(key,"","");

// call binary search
int position =
Arrays.binarySearch(data, searchKey);

// write value
if (position >= 0)

screen.write("name: "+
data[position].name+"\n"+
"telephone number: "+
data[position].teleNumber+"\n"+
"address: "+
data[position].address+"\n\n");

else
screen.write(key+" not found\n\n");

// show radio buttons
buttons.showRadioButtons();

}while (buttons.getNameOfButton().equals("continue?"));
}

}

708 Chapter 12 Sorting, Searching, and Dynamic Data Structures

N N log
2
N

sequential binary
search search

32 32 5
64 64 6

128 128 7
256 256 8
512 512 9

Figure 12.7 Worst-case efficiency of searching algorithms

When this program is run, the results are similar to those illustrated for pro-
gram Example_5.

Finally, Figure 12.7 illustrates the performance of a sequential search and a
binary search for different amounts of data.

If there are N records in an array, then applying a sequential search will
result in the worst-case search time proportional to N comparisons of keys, since
we may need to search through the entire array. However, using the binary
search, if there are N records in an array, then the average number of key com-
parisons will be log2N.

To justify this last statistic, remember that with the binary search, each time
we do a comparison we eliminate half the remaining array. How many times can
you cut an array of size N in half? The answer is log2N. For example, consider an
array containing eight records. Provided the key can be matched with a record in
the array, the worst-case scenario is obtained as follows. We find the midpoint
and make a key comparison; divide the array by 2, giving four records; find the
midpoint and make a key comparison; divide the array by 2, giving two records;
find the midpoint and make a key comparison. You are left with just one
record—the one you are searching for! The number of key comparisons we
made was 3—(log2(8) = 3). If the array contained N records, then it would be
necessary to make log2N comparisons.

An examination of this table makes the importance of algorithm efficiency
very clear.

12.5 Linked Lists

Figure 12.8 illustrates an object containing two variables; the first datum may
store an item of any type, and the second link is a reference to another object of
the same type. The figure illustrates that the object structure known as a Node is
referred to by a variable named head. The class Node may be defined as follows.

12.5 Linked Lists 709

head datum link

Node

Figure 12.8 A single node

class Node
{

private Object datum;
private Node link;

public Node(Object item, Node pointer)
{

datum = item;
link = pointer;

}
}

The declaration Node head = new Node(); would create the structure shown
in Figure 12.8.

Since the structure contains the field link, which is a reference to another
structure of the same data type Node, the record is known as a self-referential
structure.

A linked list is a sequence of nodes in which each node is linked or connected
to the node following it, as illustrated in Figure 12.9. This list has a head refer-
encing the first node in the list. The first node contains the word apple and a ref-
erence to the second node in the list. The second node contains the word
banana and a reference to the third node in the list. The third node contains the
word date and a null reference. The null reference indicates that the link does
not reference another node, and the list is terminated. To summarize, the linked
list illustrated in Figure 12.9 has the following constructional features.

head datum link datum link datum link

apple banana date null

Figure 12.9 An example of a linked list

710 Chapter 12 Sorting, Searching, and Dynamic Data Structures

■ A named reference variable head that points to the first node in the linked list

■ A list in which the order of the nodes is determined by an explicit reference
field within each record, rather than by the physical order of the components
in memory (as in the case of an array)

■ A null reference indicating the end of the linked list

A linked list may be used instead of an array for storing data in main memory
when the following circumstances apply.

■ The number of data records to be stored is not known in advance of the pro-
gram being executed. The linked list is truly a dynamic data structure, since
main memory is allocated for storing the records at run time without having
to specify the number of nodes in the list.

■ Nodes need to be inserted into a list or deleted from a list. During the inser-
tion or deletion of nodes in a linked list, there is no movement of the data
records in memory, only changes in reference (link) values. By contrast, the
insertion or deletion of records in an array would involve the movement of
many records in main memory.

Since a linked list in Java may be thought of as a collection of objects, the imple-
mentation of the data structure is very straightforward. If Node has been
declared as above, building the linked list shown in Figure 12.9 is simply a mat-
ter of specifying three objects as follows.

Node head = null;

head = new Node("date", head);
head = new Node("banana", head);
head = new Node("apple", head);

Figure 12.10 illustrates how this code is used to build the linked list—the con-
structor Node(Object item, Node pointer); uses the link pointer to “join
together” the nodes. Initially, head is set to a null reference. This value is
passed to the first constructor, and the resultant node object is then assigned to
head. This new value of head is then passed as an argument to the second con-
structor to preserve the link with the previous object, and the second new object
is then assigned to head. Notice that the first object has been pushed down the
list. Finally, the new value of head is passed as an argument to the third con-
structor to preserve the link with the previous object, and the third new object is
assigned to head.

Now that the linked list has been built, it is possible to traverse the list, start-
ing at the head, and finishing when the null reference in the last object is
detected. Each time we visit a node, the contents of the datum field may be dis-
played. The following code traverses a linked list and displays the data stored at
each node.

12.5 Linked Lists 711

head = new Node ("apple",head);

head datum link datum link datum link

apple banana date null

head datum link datum link

banana date

head

head

datum link

date

null

null

null

Node head = null ;

head = new Node ("date",head) ;

head = new Node ("banana",head) ;

Figure 12.10 Building a linked list

Node temporary = head;

while (temporary != null)
{

screen.write(temporary.datum);
temporary = temporary.link;

}

You are advised to desk check this code, using the data from Figure 12.9, before
progressing with the remainder of this section.

The following code shows how all of this comes together to define the
class Node.

import avi.*;

public class Node
{

private Object datum;

712 Chapter 12 Sorting, Searching, and Dynamic Data Structures

private Node link;

public Node(){}

public Node(Object item, Node pointer)
{

datum = item;
link = pointer;

}

public void displayList(Window screen)
{

Node temporary = this;

while (temporary != null)
{

screen.write(temporary.datum+"\n");
temporary = temporary.link;

}
}

}

When you inspect the code we used to build the linked list, you can see that it is
very repetitive. If we were to build a list of different items, only the arguments
used in the constructors would change. If these arguments are represented in a
program as variables, then it is possible to build a linked list of any number of
nodes (subject to the size of the memory allocated to building objects!).
Program Example_7 builds and displays a linked list.

import avi.*;

class Example_7
{

static public void main(String[] args)
{

String[] answer = {"yes","no"};

Window screen = new Window("Example_7.java");
DialogBox inputFruit = new DialogBox(screen,"Name of fruit?");
RadioButtons more = new
RadioButtons(screen,"More data?",answer);

Node list=null;
String datum;

12.5 Linked Lists 713

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_7.java date: 7/22/2000 time: 3:10:57

===

At the prompt: Name of fruit?, you input [date] at the dialog box.

At the prompt: More data?, you selected [yes] from the radio buttons.

At the prompt: Name of fruit?, you input [banana] at the dialog box.

At the prompt: More data?, you selected [yes] from the radio buttons.

At the prompt: Name of fruit?, you input [apple] at the dialog box.

At the prompt: More data?, you selected [no] from the radio buttons.

apple
banana
date

screen.showWindow();

do
{

inputFruit.showDialogBox();
datum = inputFruit.getString();
list = new Node(datum,list);
more.showRadioButtons();

} while (more.getNameOfButton().equals("yes"));

// display contents of list
list.displayList(screen);

}
}

Results from the log file follow:

Program Example_7 uses the Node class to create and traverse a linked list.
Following the object-oriented philosophy, we want to create a separate linked list
class, essentially a linked list abstract data type (ADT). The first consideration to

714 Chapter 12 Sorting, Searching, and Dynamic Data Structures

address is the relationship between the linked list class and the Node class that has
already been defined.

Java will allow an inner class to be nested within an outer class. The inner
class is sometimes referred to as a “member” class of the outer class. A member
class is just another class component, in the same way that constants, variables,
and methods are class components. The code within a member class can implic-
itly refer to any of the constants, variables, and methods of its enclosing class.

Since we have defined the class Node in the previous program, a
LinkedList class should nest the class Node as an inner class. In addition, it
should be able to offer methods to append a node to the list, delete a node from
the list, return the number of nodes, and return whether the list is empty. In the
definition of the LinkedList class that follows, the method to display the
linked list has been removed from the class Node and implemented in the class
LinkedList.

public class LinkedList
{

public LinkedList()
public void append(Object datum)
public boolean delete(Object scrap)
public void displayList()
public boolean isEmpty()
public int numberOfNodes()

}

Figure 12.11 illustrates the variables used to build and maintain a linked list LL.
Within the implementation of the class LinkedList, these variables are defined
as follows.

private Node head; // references the first node of the list
private Node tail; // references the last node of the list
private Node temporary; // used for node manipulation

The code used to append a node into the linked list follows. This should be
read in conjunction with Figure 12.12. Each drawing in this figure depicts the
effects of a separate line of the following code.

public void append(Object datum)
{

if (head==null) // list empty
{

head=new Node(datum,head);
tail=head;

}

12.5 Linked Lists 715

head

apple banana grape null

LL

temporary tail

Figure 12.11 Class variables associated with the linked list

else
{

temporary = new Node(datum,temporary);
tail.link = temporary;
tail = temporary;
temporary = null;

}

nodeCount++;
}

Notice that the nodes are appended into the linked list, unlike the previous
algorithm in which the nodes were inserted into the head of the linked. After
appending a node, the class variable nodeCount is increased.

The removal of any node from any position in the linked list is slightly more
tricky than the removal of a node from the head of the list.

There are three cases to consider.

■ The removal of a node at the head of the list: The head must point to the
next node in the list if one exists. The value of the head of the list must
always be preserved; otherwise, there is no means of accessing the linked list.

■ The removal of a node from the middle of the list, that is, excluding the
head or tail nodes. The previous node to the one being removed must point
to the successor node (the node after the one to be removed).

■ The removal of the last node in the list. The penultimate node becomes the
last node in the list.

716 Chapter 12 Sorting, Searching, and Dynamic Data Structures

head=new Node (datum,head) ;

tail=head ;

temporary=new Node (datum,temporary) ;
tail.link=temporary ;

apple banana

headLL

temporary

tail

null

tail.link

headLL

temporary tail

null null null

apple banana

temporary=null ;

headLL

temporary

tail

null

apple banana

tail=temporary ;

headLL

temporary

tail

null

apple

headLL

temporary

tail

null

null

Figure 12.12 Appending a node into a linked list

12.5 Linked Lists 717

The code used to delete any node from the linked list follows. Notice that it is
necessary to include two local references in this code, one to point at the current
node (the node being inspected), and one to point at the previous node (the
node previously inspected if not at the head of the list).

public boolean delete(Object scrap)
{

Node previous = head;

for (Node current=head; current != null; current=current.link)
{

// node to be deleted is at the head of the list
if (current.datum.equals(scrap) && previous==current)
{

head = current.link;
if (head == null) tail = null;
nodeCount--;
return true;

}

// node to be deleted is after the first node and before the last
else if (current.datum.equals(scrap) && (current.link != null))
{

previous.link = current.link;
nodeCount--;
return true;

}

// node to be deleted is at the end of the list
else if (current.datum.equals(scrap) && (current.link == null))
{

tail = previous;
previous.link = null;
nodeCount--;
return true;

}

previous = current;
}

return false;
}

You should desk check the code while following Figures 12.13, 12.14, and
12.15.

718 Chapter 12 Sorting, Searching, and Dynamic Data Structures

To delete the first node in the linked list

null

banana grape null

null

grape null

current.link

scrap

headLL

headLL

temporary tail

temporary tail

apple banana

previous

current

Figure 12.13 Deleting a node from the front of a linked list

LinkedList class
Here is the complete version of the LinkedList class:

import avi.*;

public class LinkedList
{

class Node
{

protected Object datum;
protected Node link;

12.5 Linked Lists 719

To delete the any node between the first and last nodes in the linked list

previous.link

previous.link

null

apple grape null

null

grape null

current.link

scrap

headLL

headLL

temporary tail

temporary tail

apple banana

previous

current

previous

Figure 12.14 Deleting a node other than at the head or tail

public Node(){}

public Node(Object item, Node pointer)
{

datum = item;
link = pointer;

}
}

720 Chapter 12 Sorting, Searching, and Dynamic Data Structures

To delete the node from the tail of a linked list

previous.link

previous.link

null

apple banana null

null

grape null

current.link

scrap

headLL

headLL

temporary tail

temporary tail

apple banana

previous

current

previous

Figure 12.15 Deleting a tail node

private Node head;
private Node tail;
private Node temporary;
private int nodeCount;

// constructor
/**
The LinkedList class will create a linked list object,

12.5 Linked Lists 721

that contains no nodes.
*/
public LinkedList()
{

head = null;
tail = null;
temporary = null;
nodeCount = 0;

}

/**
The method append will add an object into the end of the linked list;
the method will allow for multiple entries of the same object.
@param datum is the object to be added into the end of the list.
*/
public void append(Object datum)
{

if (head==null) // list empty
{

head=new Node(datum,head);
tail=head;

}
else
{

temporary = new Node(datum,temporary);
tail.link = temporary;
tail = temporary;
temporary = null;

}
nodeCount++;

}

/**
The method delete removes an object from the linked list.
@param scrap is the object to be removed.
@return Returns true if the object could be found and successfully
deleted.
*/
public boolean delete(Object scrap)
{

Node previous = head;

// for every node in the linked list
for (Node current=head; current != null; current=current.link)
{

722 Chapter 12 Sorting, Searching, and Dynamic Data Structures

// node to be deleted is at the head of the list
if (current.datum.equals(scrap) && previous==current)
{

head = current.link;
if (head == null) tail = null;
nodeCount--;
return true;

}
// node to be deleted is after the first node and before
// the last
else if (current.datum.equals(scrap) &&

(current.link != null))
{

previous.link = current.link;
nodeCount--;
return true;

}
// node to be deleted is at the end of the list
else if (current.datum.equals(scrap) &&

(current.link == null))
{

tail = previous;
previous.link = null;
nodeCount--;
return true;

}

previous = current;
}

return false;
}

/**
The method displayList displays the contents of a linked list
from the first node through to the last node.
@param screen is the container of the text area on which to write
the information.
*/
public void displayList(Window screen)
{

Node temporary = head;

if (head == null)

12.5 Linked Lists 723

{
screen.write("linked list is empty\n");
return;

}

screen.write("\nContents of linked list\n");
screen.write("=======================\n");
while (temporary != null)
{

screen.write((String)temporary.datum+"\n");
temporary = temporary.link;

}
screen.write("=======================\n\n");

}

/**
The method isEmpty will return whether the linked list is empty.
@return Returns true if the list is empty, otherwise return false.
*/
public boolean isEmpty()
{

return (nodeCount == 0);
}

/**
The method numberOfNodes returns the number of nodes in the linked
list.
@return Returns the number of nodes in the linked list.
*/
public int numberOfNodes()
{

return nodeCount;
}

}

Program Example_8 tests the methods of the class LinkedList.

// case study - linked lists
import avi.*;

class Example_8
{

static public void main(String[] args)
{

724 Chapter 12 Sorting, Searching, and Dynamic Data Structures

String[] reply = {"Append item to list",
"Delete item from list",
"Display the list",
"Display number of nodes",
"Quit to inspect I/O"};

String[] answer = {"yes","no"};

Window screen = new Window("Example_8.java");
DialogBox inputFruit = new
DialogBox(screen,"Name of fruit?");
RadioButtons menu = new
RadioButtons(screen,"What next?",reply);
RadioButtons more = new
RadioButtons(screen,"More data?",answer);

LinkedList list = new LinkedList();
String datum;
String choice;

screen.showWindow();

do
{

menu.showRadioButtons();
choice = menu.getNameOfButton();

if (choice.equals("Append item to list"))
{

do
{

inputFruit.showDialogBox();
datum = inputFruit.getString();
list.append(datum);
screen.write(datum+

" was appended to list\n");
more.showRadioButtons();

} while (more.getNameOfButton().equals("yes"));
}
else if (choice.equals("Delete item from list") &&

!list.isEmpty())
{

do
{

inputFruit.showDialogBox();
datum = inputFruit.getString();

12.5 Linked Lists 725

if (list.delete(datum))
{

screen.write(datum+
" was scrapped from list\n");

}
more.showRadioButtons();

} while (more.getNameOfButton().equals("yes"));
}
else if (choice.equals("Display the list"))
{

list.displayList(screen);
}
else if (choice.equals("Display number of nodes"))
{

screen.write("number of nodes "+
list.numberOfNodes()+"\n");

}
} while (!choice.equals("Quit to inspect I/O"));

}
}

A screen shot follows from the running program.

726 Chapter 12 Sorting, Searching, and Dynamic Data Structures

stack top

apple

banana

date

fig

poppush
Access to data is via the stack top

Figure 12.16 Access to a stack is from one end only

We have designed, coded, and tested our own linked list class. It is important
for you, as a student of computing, to learn the basic approaches we have illus-
trated and to see how they all work together to provide a useful class. You
should know, however, that a good linked list class also comes with the
java.util package. You may want to investigate this class in case you have
opportunities to use it in your future programs.

12.6 Stacks

The linked list is a general list structure. Several specialized list structures are
important in computer program design, namely the queue and the stack. The
queue is a list in which we append items at one end of the list and remove them
from the other end. It is a First In First Out or FIFO list. It is useful for holding
a list of jobs that must be executed, for example. The stack is a list in which we
insert items at one end of the list and remove them from the same end. It is a
Last In First Out or LIFO list. It is useful for holding the list of return
addresses to be used when following a sequence of nested methods calls, for
example.

Figure 12.16 illustrates a stack. As you can see, the stack operates on the
LIFO principle. The entry/exit point of the stack is known as the stack top. An
item that joins the stack is said to be pushed on to the stack. An item that leaves
the stack is said to be popped from the stack. It is also possible to peek (look at) at
the item on the top of the stack without removing the item.

Figure 12.17 illustrates the movement of the stack top as data is pushed and
popped to and from the stack.

You may create a stack from a linked list; in fact, we have already gone part
way in doing so. If you examine the code in the class LinkedList, you may

12.6 Stacks 727

apple

apple

banana

apple

banana

push ("banana")

push ("date")

push ("apple")

stack top

stack top

stack top

date

apple

apple

banana

pop banana

pop date

pop apple

stack top

stack top

stack top

Figure 12.17 Pushing and popping items to and from a stack

observe that we can already insert and delete a node from the front of a linked
list. If we treat the front of the linked list as the stack top, then we already have
the code we need for manipulating data on a stack.

Alternatively, the Java util package contains the following Stack class.

728 Chapter 12 Sorting, Searching, and Dynamic Data Structures

public class Stack extends Vector
{

// Constructors
public Stack();

// Methods
public boolean empty();
public Object peek();
public Object pop();
public Object push(Object item);
public int search(Object o);

}

Stacks are used by the Java language in tracing the route the computer takes
through the methods in attempting to find a catch block to handle the excep-
tion. The output from the stack trace is always displayed in the order of visiting
the methods, with the last method visited being displayed first. This is a typical
characteristic of a stack—the last item stored in the stack is the first item to be
retrieved from the stack.

CASE STUDY

Using a Stack for Converting Algebraic Expressions

Background Information
Normal algebraic notation is often termed infix notation, since the binary arithmetic operator
appears between (inside) the two operands to which it is being applied. Infix notation may
require parentheses to specify the desired order of operations. For example, in the expression
a/b+c, the division will occur first, followed by the addition. If we want the addition to occur
first, we must parenthesize the expression as a/(b+c).

Using postfix notation (also called reverse Polish notation after the nationality of its origina-
tor Jan Lukasiewicz), the need for parentheses is eliminated because the operator is placed
directly after the two operands to which it applies.

The infix expression a/b+c would be written as the postfix expression ab/c+, which is inter-
preted as divide a by b and add c to the result.

The infix expression a/(b+c) would be written as abc+/ in postfix notation, which is inter-
preted as add b to c and then divide that result into a.

The Railway Shunting-Yard Algorithm
In compiler writing it is more convenient to evaluate arithmetic expressions written in reverse
Polish notation than it is to evaluate arithmetic expressions written in infix notation. The

Case Study: Using a Stack for Converting Algebraic Expressions 729

following algorithm, known as the Railway Shunting-Yard algorithm (since data are shunted to
and from a stack), can be used to convert infix notations to reverse Polish notations.

The operators [and] are used to delimit the infix expression. For example, the expression
a*(b+c/d) will be coded as [a*(b+c/d)]. The algorithm uses operator priorities as defined in
Figure 12.18.

Use Figure 12.19 to trace the following explanation of the algorithm. The figure shows the
steps followed by the algorithm to convert the infix expression a*(b+c/d) into the equivalent
postfix expression abcd/+*.

Diagram (i): If brackets [or (are encountered, each is pushed on to the stack.
Diagram (ii): All operands that are encountered (for example a, b, and c) are stored in a string

buffer.
Diagrams (iii), (iv), and (v): When an operator is encountered, its priority is compared with that

of the operator’s priority at the top of the stack.
Diagram (vi): If, when comparing priorities, the operator encountered is not greater than the

operator on the top of the stack, the operator on the top of the stack is popped and added to
the string buffer. This process is repeated until the encountered operator has a higher prior-
ity than the stack top operator. The encountered operator is then pushed on to the stack.

Diagrams (v) and (vi): When a) is encountered, all the operators up to but not including (are
popped from the stack one at a time and stored in the string buffer. The operator (is then
deleted from the stack.

Diagrams (vi) and (vii): When the operator] is encountered, all the remaining operators, up to
but not including [, are popped from the stack one at a time and stored in the string buffer.
The string of characters that is displayed will be the reverse Polish string.

Operator Priority

[0
(1
- 2
+ 2
/ 3
* 3
^ 4

Figure 12.18 Operator priorities

730 Chapter 12 Sorting, Searching, and Dynamic Data Structures

Statement of the Problem Create a class ReversePolish that contains methods to permit
an arithmetic expression written in infix notation to be converted to a postfix notation
expression. Create an additional class to test the methods of the ReversePolish class.

Analysis of Classes
Naturally, the Java class Stack will be used in the solution to this problem. However, the algo-
rithm to convert an infix string to a postfix string will be an instance method in a class
ReversePolish. The UML representation of the class ReversePolish and its dependencies
are shown in Figure 12.20.

The signatures of the constructor and method for this class follow.

[a* (b+c/d)]

/d)]abc

stack

stack

abcd/+*

stack

(i)

(iv)

(vii)

* (b+c/d)]a

)]abcd abcd/+

stack

stack

(ii)

(v) (vi)

+
(
*
[

[

/
+
(
*
[

[

+c/d)]

]

stack

stack

(iii)

(
*
[

(
*
[

ab

Figure 12.19 The use of a stack in the reverse Polish algorithm

Case Study: Using a Stack for Converting Algebraic Expressions 731

class ReversePolish
{

// constructor
public ReversePolish(String infixExpression);

// method to return a reverse Polish string
public String toReversePolish();

// method to return the numerical priority of an operator
private int priority(char operator)

}

Algorithm for the Constructor ReversePolish
The purpose of the constructor is to input the infix string as a parameter, and store the string as
a StringBuffer object. The StringBuffer class represents a string of characters. It differs
from the String class in that its contents may be modified. A StringBuffer object grows in
length as necessary. The string stored in a StringBuffer object may be inspected character-by-
character with the charAt() method and modified in place with the append()method.

1. copy formal parameter string to local variable of type string buffer.

ReversePolish

ReversePolish Stack

-infixString
-postfixString

+ReversePolish
+toReversePolish
-priority

Figure 12.20 UML representation of the class ReversePolish and its
dependencies

732 Chapter 12 Sorting, Searching, and Dynamic Data Structures

Algorithm for the Method toReversePolish
This algorithm is a representation of the logic expressed when describing the functionality of
Figure 12.19. It describes how the stack is used as the siding to temporarily store operators.

1. for every character in the infix expression
2. if next character is closing parenthesis ‘)’
3. pop operator from stack
4. while operator not opening parenthesis ‘(‘
5. store operator in string buffer
6. pop operator from stack
7. else if next character is closing bracket ‘]’
8. pop operator from stack
9. while operator not opening bracket ‘[‘

10. store operator in string buffer
11. pop operator from stack
12. else if next character is opening parenthesis ‘(‘ or opening bracket ‘[‘
13. push next character on to stack
14. else if next character arithmetic operator
15. while priority of next character is < = to priority of stack top operator
16. pop operator from stack
17. store operator in string buffer
18. push next character on to stack
19. else
20. store next character in string buffer

Algorithm for the Method private priority
To effectively push and pop operators onto the stack it is necessary to compare the priority of
the incoming operator with the stack top operator. The purpose of the private helper method
priority is to return the priority of an operator.

1. switch operator
2. [: return 0
3. (: return 1
4. -, + : return 2
5. /, * : return 3
6. ^ : return 4
7. default : return -1

Desk Check of the Method toReversePolish
The test data is [a*(b+c/d)].

Case Study: Using a Stack for Converting Algebraic Expressions 733

Diagram (Figure 12.19) (i) (ii) (iii) (iv)

nextCharacter [a * (b + c /

nextCharacter == ‘)’? false false false false false false false false

nextCharacter == ‘]’? false false false false false false false false

nextCharacter == ‘(‘ | ‘[‘? true false false true false false false false

arithmetic operator? false true false true false true

popped operator

operator != ‘(‘

operator != ‘[‘

priority <= priority stack top false false false

contents of stack [[* [*([*(+ [*(+/

contents of string buffer a ab abc

Diagram (Figure 12.19) (cont) (v) (vi) (vii)

nextCharacter d)]

nextCharacter == ‘)’? false true false

nextCharacter == ‘]’? false true

nextCharacter == ‘(‘ | ‘[‘? false

arithmetic operator? false

popped operator / + (* [

operator != ‘(‘ false false false true

operator != ‘[‘ false

priority <= priority stack top

contents of stack [*(+ [*([* [

character stored in buffer abcd abcd/ abcd/+ abcd/+*

import java.util.*;

public class ReversePolish
{

private StringBuffer infixString = new StringBuffer();
private StringBuffer postfixString = new StringBuffer();

// constructor
/**
The ReversePolish class will create a reverse Polish object.
@param A string representing the infix expression to be converted.
*/
public ReversePolish(String infixExpression)
{

infixString.append(infixExpression);
}

734 Chapter 12 Sorting, Searching, and Dynamic Data Structures

/**
The method toReversePolish converts the infix expression into a
reverse Polish string.
@return Return the reverse Polish string.
*/
public String toReversePolish()
{

char nextCharacter;
char operator='\u0000';

int lengthOfExpression = infixString.length();

// instantiate stack object siding
Stack siding = new Stack();

for (int index=0; index != lengthOfExpression; index++)
{

// get next nextCharacter from
nextCharacter = infixString.charAt(index);

if (nextCharacter == ')')
{

// pop character from stack
operator = ((Character)siding.pop()).charValue();
while (operator != '(')
{

// store operator in string buffer
postfixString.append(operator);
// pop character from stack
operator =
((Character)siding.pop()).charValue();

}
}
else if (nextCharacter == ']')
{

// pop character from stack
operator = ((Character)siding.pop()).charValue();
while (operator != '[')
{

// store operator in string buffer
postfixString.append(operator);
// pop character from stack
operator =
((Character)siding.pop()).charValue();

}
}

Case Study: Using a Stack for Converting Algebraic Expressions 735

else if (nextCharacter == '(' || nextCharacter == '[')
{

// push character on to stack
siding.push(new Character(nextCharacter));

}
else if (nextCharacter == '^' || nextCharacter == '*' ||

nextCharacter == '/' || nextCharacter == '+' ||
nextCharacter == '-')

{
while (priority(nextCharacter) <=

priority(((Character)siding.peek()).
charValue()))

{
// pop character from stack
operator = ((Character)siding.pop()).

charValue();
// store operator in string buffer
postfixString.append(operator);

}

// push character on to stack
siding.push(new Character(nextCharacter));

}
else

// store operand in string buffer
postfixString.append(nextCharacter);

}

return postfixString.toString();
}

// method to return the priority of an operator
private int priority(char operator)
{

switch (operator)
{
case '[': return 0;
case '(': return 1;
case '-': case '+': return 2;
case '/': case '*': return 3;
case '^': return 4;
default : return -1;
}

}
}

736 Chapter 12 Sorting, Searching, and Dynamic Data Structures

The UML diagram for the class used to test the methods of the ReversePolish class is seen in
Figure 12.21.

import avi.*;

class Example_9
{

public static void main(String[] args)
{

// store infix expressions into an array
String[] infixExpression = {"[a*b+c]","[a*(b+c/d)]",

"[a*b+c/d]","[u+f*t]",
"[b^2-4*a*c]","[h*(a+4*b+c)/3]",
"[w*1-1/(w*c)]"};

Window screen = new Window("Example_9.java");
screen.showWindow();

for (int index=0; index != infixExpression.length; index++)
{

Example_9

Example_9

ReversePolish

Window

+main

Figure 12.21 UML representation of the class Example_9 and its dependencies

Case Study: Using a Stack for Converting Algebraic Expressions 737

// display an infix expression
screen.write("infix: "+infixExpression[index]+"\n");

// instantiate a ReversePolish object
ReversePolish expression = new
ReversePolish(infixExpression[index]);

// convert the infix expression to reverse Polish and
// display on the screen
screen.write("reverse Polish: "+

expression.toReversePolish()+"\n\n");
}

}
}

Results from the log file follow:

===
L O G F I L E

audio-visual interface [avi] - Release 1.0 - by Barry Holmes
filename: Example_9.java date: 7/22/2000 time: 3:57:44

===

infix: [a*b+c]
reverse Polish: ab*c+

infix: [a*(b+c/d)]
reverse Polish: abcd/+*

infix: [a*b+c/d]
reverse Polish: ab*cd/+

infix: [u+f*t]
reverse Polish: uft*+

infix: [b^2-4*a*c]
reverse Polish: b2^4a*c*-

infix: [h*(a+4*b+c)/3]
reverse Polish: ha4b*+c+*3/

infix: [w*1-1/(w*c)]
reverse Polish: w1*1wc*/-

738 Chapter 12 Sorting, Searching, and Dynamic Data Structures

S U M M A R Y

■ In the selection sort, the largest item of data found in the cells 0..N � 1 of
an array is transferred to cell N � 1. The algorithm is repeated for the items
of data in cells 0 .. N � 2, and the largest item of data is transferred to cell
N � 2. The algorithm is repeated until there is only one number to consider
in cell 0.

■ The selection sort has an efficiency of the order on N 2, and are known as
quadratic algorithms.

■ Searching for data held in an array is made more efficient when the data is
ordered on key value. If the value of the key is greater than the item being
inspected, then the key may be found further on in the array. However, if the
value of the key is less than the item being inspected, then the key cannot
exist in the array and the search must be abandoned.

■ The binary-search algorithm relies upon the fact that the contents of the
array must be ordered. The technique repeatedly divides an array into
smaller arrays that are likely to contain the key until either a key match is
possible or the array cannot be subdivided further.

■ For large amounts of data, a Quicksort (N log2N) is an efficient algorithm for
sorting data, and a binary search (log2N) is an efficient algorithm for search-
ing for a piece of data.

■ A node may be regarded as a self-referential record since it contains a field
with a reference to the same record.

■ A linked list is a sequence of nodes in which each node is linked or con-
nected to the node following it. A named reference variable points to the first
node in the linked list. A null reference is used to indicate the end of the
linked list.

■ A linked list offers the following advantages over an array:

■ A list is created at run time through dynamic memory allocation.

■ The insertion and deletion of nodes in a list requires changing reference
variables and not moving data about main memory.

■ A linked list may be used to represent queues and stacks.

■ A stack is a data structure in which access to objects is from one end only. A
stack works on the LIFO principle that the last object inserted into the stack
is the first object removed from the stack. Objects are said to be pushed
onto the stack (for storage) and popped from the stack (for access and
removal). See java.util.Stack.

Programming Problems 739

Review Questions

Short Answer

1. If an array contained 1,024 integers, how much longer proportionally would it take to
sort the numbers using a selection sort than with a Quicksort?

2. What changes would you make to the selection sort to reverse the order of the sorted
numbers, that is, highest to lowest?

3. What is a sequential search?

4. What is the proportional saving in time when using a sequential search versus a binary
search to search for an item that does not exist?

5. How many key comparisons are necessary in a binary search when there are 1,024 items
in an array and the key does not exist in the array?

6. Explain the term self-referential structure.

7. How do you make a reference to a linked list?

8. Why is it easier to insert or delete nodes in a linked list rather than to insert or delete
items in an array?

9. Give three methods for implementing a stack using the Java language.

Exercises
10. Implement a class Queue, based upon a linked list, which allows objects to join at the

rear of the list and leave from the front of the list. In addition to the constructor, you
should devise methods to test whether the queue is empty, to insert and delete objects
from the queue, and to display the values of the objects in the list.

Programming Problems
11. Create a class Friend that contains data fields (instance variables) for the name (sur-

name followed by first name), address, telephone number, birthday, and name of the
image file (JPEG or TIF) of the friend’s photograph. Remember to create a constructor
for this class that will initialize the data fields and create methods to retrieve the data
from the data fields.

Create your own text file containing the data fields of the Friend class for any num-
ber of your own friends. You will also need to digitize the photographs of your friends
and store these images in the same directory as the text file.

Create a class to read the text file, create Friend objects, and store each object in
consecutive cells of a one-dimensional array; sort the array on the surname of the friend.
The class should contain a method for you to get the contents of the sorted array.

740 Chapter 12 Sorting, Searching, and Dynamic Data Structures

Write a main method to input the name of a friend, and use the prewritten binary
search method to search the array for the name of the friend. If the name is found, then
display all the personal details about the friend, including the photograph.

12. Using the class Friend and the text file created in Question 11, modify both the
LinkedList class and program Example_8 to store the Friend objects in a linked list
and maintain the linked list.

13. Write a program to create a linked list of nonzero integer random numbers stored in key
disorder. Build a second linked list that contains the integers from the first linked list
sorted into key order. Find the largest number in the first linked list and copy this to the
second linked list. As each integer is used from the first linked list, delete it from the
first linked list. Repeat the process until the first linked list is empty. Display the con-
tents of the second linked list.

Scenario for Questions 14 to 16

A supermarket has a fixed number of checkout lanes. Customers wanting to pay for their
goods normally choose the lane that has the shortest queue.

The queues of customers waiting to pay for their goods at a supermarket lane can be simulated
on a computer.

The data structures that represent the customers queuing at the lanes are shown in Figure 12.22.
All queues are organized on a first in first out (FIFO) basis. New customers must join the queue
at the rear, and only a customer at the head of the queue can be removed from the queue.

14. Implement a class BadDataException.

A BadDataException may be thrown from any method in which:

■ the checkout number is not in the range 0 .. lane-1

■ the number of checkouts is less than the minimum stated

■ the time of day is not in the range 0 .. 2359

■ an attempt is made to insert a customer into a checkout that does not exist

■ an attempt is made to remove a customer from an empty queue

Note that you are not expected to validate the time order in which a customer enters or
leaves a queue.

15. Implement a class SupermarketQueue that contains the following constructor and
methods.

public class SupermarketQueue
{

// constructor
public SupermarketQueue(int numberOfCheckouts) throws

BadDataException;

Programming Problems 741

1004

1003

1003

1002 1000

1002

One-dimensional array checkouts used
to store a pointer to the rear of each queue.
A null pointer indicates that the lane has no
queue.

0

1

2

3

0

1

2

3

A linked list used to represent
a queue for a lane; each node in the list
represents a single customer. Each
node contains the time of the day (24-
hour clock) that the customer entered
the queue.

Lane number Rear of queue Head of queue

Lane number

3

1

2

0

One-dimensional array sizeOfEachQueue used
to store the number of customers in each queue.

Figure 12.22

// instance methods
// input a customer into a queue for a given checkout at a

// given time
public void queue(int checkoutNumber,

int timeOfDay) throws BadDataException;

// remove a customer from the head of a given checkout at a given
// time and return (in minutes) the time spent queuing

public int leave(int checkoutNumber,
int timeOfDay) throws BadDataException;

// method that returns true if customers are queuing at a
// checkout

742 Chapter 12 Sorting, Searching, and Dynamic Data Structures

public boolean queueFormed(int checkoutNumber) throws

BadDataException;

// return the number of the checkout with the smallest queue
public int checkoutWithSmallestQueue();

// display the time each customer entered a queue for all the
// lanes

public void displayQueues();
}

16. Write a main method that uses the public methods of the classes to test all the construc-
tors and all the methods defined in the classes BadDataException and
SupermarketQueue.

17. Figure 12.23 illustrates a circular doubly linked list structure containing a dummy node
at the head of the list.

Rewrite Program Example_8 to maintain data in this structure. Examine the con-
tents of the list both in order, ascending and descending.

dummy node

empty
string

dateapple banana

head

Figure 12.23 A circular double linked list

A P P E N D I X A
Tables

Table A.1 ASCII characters and their respective hexadecimal and octal codes

743

Table A.2 Java primitive data types

744 Appendix A

Table A.3 Operator priorities

Tables 745

Table A.4 Escape-sequence characters

746 Appendix A

A P P E N D I X B

Syntax of Java
Within the syntax description we use both terminal symbols and nonterminal
symbols. The terminal symbols are shown in color, and nonterminal symbols in
an italic typeface. Terminal symbols cannot be defined further, unlike nontermi-
nal symbols that can be defined in other syntax definitions.

B.1 Productions from Lexical Structures

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral

B.2 Productions from Types, Values, and
Variables

Type:
PrimitiveType
ReferenceType

PrimitiveType:
NumericType
boolean

747

NumericType:
IntegralType
FloatingPointType

IntegralType: one of
byte short int long char

FloatingPointType: one of
float double

ReferenceType:
ClassOrInterfaceType
ArrayType

ClassOrInterfaceType:
Name

ClassType:
ClassOrInterfaceType

ArrayType:
PrimitiveType []
Name []
ArrayType []

B.3 Productions from Names

Name:
SimpleName
QualifiedName

SimpleName:
Identifier

QualifiedName:
Name . Identifier

B.4 Productions from Packages

CompilationUnit:
PackageDeclaration opt ImportDeclaration opt TypeDeclaration opt

ImportDeclarations:
ImportDeclaration
TypeDeclarations TypeDeclaration

748 Appendix B

TypeDeclarations:
TypeDeclaration
TypeDeclarations TypeDeclaration

PackageDeclarations:
package Name ;

ImportDeclaration:
SingleTypeImportDeclaration
TypeImportOnDemandDeclaration

SingleTypeImportDeclaration:
import Name ;

TypeImportOnDEmandDEclaration:
import Name . * ;

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration
;

B.5 Productions Used Only in the LALR(1)
Grammar

Modifiers:
Modifier
Modifiers, Modifier

Modifier: one of
public protected private
static
abstract final native synchronized transient volatile

B.6 Productions from Classes

Productions from Class Declarations
ClassDeclarations:

Modifiersopt class Identifier Superopt Interfacesopt ClassBody

Super:
extends ClassType

Syntax of Java 749

Interfaces:
implements InterfaceTypeList

InterfaceTypeList:
InterfaceType
InterfaceTypeList , InterfaceType

ClassBody:
{ ClassBodyDeclarationopt }

ClassBodyDeclarations:
ClassBodyDeclaration
ClassBodyDeclarations ClassBodyDeclaration

ClassBodyDeclaration:
ClassMemberDeclaration
StaticInitializer
ConstructorDeclaration

ClassMemberDeclaration:
FieldDeclaration
MethodDeclaration

Productions from Field Declarations
FieldDeclaration:

Modifiersopt Type variableDeclarators ;

VariableDeclarators:
VariableDeclarator
VariableDeclarators , VariableDeclarator

VariableDeclarator:
VariableDeclaratorId
VariableDeclaratorId = VariableInitializer

VariableDeclaratorId:
Identifier
VariableDeclaratorId []

VariableInitializer:
Expression
ArrayInitializer

750 Appendix B

Productions from Method Declarations
MethodDeclaration:

MethodHeader MethodBody

MethodHeader:
Modifiersopt Type MethodDeclarator Throwsopt
Modifiersopt void MethodDeclarator Throwsopt

MethodDeclarator:
Identifier (FormalParameterListopt)
MethodDeclarator []

FormalParameterList:
FormalParameter
FormalParameterList , FormalParameter

FormalParameter:
Type VariableDeclaratorId

Throws:
throws ClassTypeList

ClassTypeList:
ClassType
ClassTypeList , ClassType

MethodBody:
Block
;

Productions from Static Initializers
StaticInitializer:

static Block

Productions from Constructor Declarations
ConstructorDeclaration:

Modifiersopt ConstructorDeclarator Throwsopt ConstructorBody

ConstructorDeclarator:
SimpleName (FormalParameterListopt)

ConstructorBody:
{ ExplicitConstructorInvocationopt BlockStatementsopt }

Syntax of Java 751

ExplicitConstructorInvocation:
this (ArgumentListopt);
super (ArgumentListopt);

B.7 Productions from Interfaces

Productions from Interface Declarations
InterfaceDeclaration:

Modifiersopt interface Identifier ExtendsInterfacesopt InterfaceBody

ExtendsInterfaces:
extends InterfaceType
ExtendsInterfaces , InterfaceType

InterfaceBody:
{ InterfaceMemberDeclarationopt }

InterfaceMemberDeclarations:
InterfaceMemberDeclaration
InterfacememberDeclarations InterfaceMemberDeclaration

InterfaceMemberDeclaration:
ConstantDeclaration
AbstractMethodDeclaration

ConstantDeclaration:
FieldDeclaration

AbstractMethodDeclaration:
MethodHeader ;

B.8 Productions from Arrays

ArrayInitializer:
{ VariableInitializersopt ,opt }

VariableInitializers:
VariableInitializer
VariableInitializers , VariableInitializer

752 Appendix B

B.9 Productions from Blocks and Statements

Block:
{ BlockStatementsopt }

BlockStatements:
BlockStatement
BlockStatements BlockStatement

BlockStatement:
LocalVariableDeclarationsStatement
Statement

LocalVariableDeclarationsStatement:
LocalvariableDeclaration ;

LocalVariableDeclaration:
Type VariableDeclarators

Statement:
StatementWithoutTrailingSubstatement
LabeledStatement
IfThenStatement
IfThenElseStatement
WhileStatement
ForStatement

StatementNoShortIf:
StatementWithoutTrailingSubstatement
LabeledStatementNoShortIf
IfThenElseStatementNoShortIf
WhileStatementNoShortIf
ForStatementNoShortIf

StatementWithoutTrailingSubstatement:
Block
EmptyStatements
ExpressionStatements
SwitchStatement
DoStatement
BreakStatement
ContinueStatement
ReturnStatement
SynchronizedStatement
ThrowStatement
TryStatement

Syntax of Java 753

EmptyStatement:
;

LabeledStatement:
Identifier : Statement

LabeledStatementNoShortIf:
Identifier : StatementNoShortIf

ExpressionStatement:
Statementexpression ;

StatementExpression:
Assignment
PreIncrementExpression
PreDecrementExpression
PostIncrementExpression
PostDecrementExpression
MethodInvocation
ClassInstanceCreationExpression

IfThenStatement:
if (Expression) Statement

IfThenElseStatement:
if (Expression) StatementNoShortIf else Statement

IfThenElseStatementNoShortIf:
if (Expression) StatementNoShortIf else StatementNoShortIf

Switch statement:
switch (Expression) SwitchBlock

SwitchBlock:
{ SwitchBlockStatementGroupsopt SwitchLabelsopt }

SwitchBlockstatementGroups:
SwitchBlockStatementGroup
SwitchBlockStatementGroups SwitchBlockStatementGroup

SwitchBlockStatementGroup:
Switchlabels BlockStatements

SwitchLabels:
SwitchLabel
SwitchLabels SwitchLabel

754 Appendix B

SwitchLabel:
case ConstantExpression :
default :

WhileStatement:
while (Expression) statement

WhileStatementNoShortIf:
while (Expression) statementNoShortIf

DoStatement:
do statement while (expression) ;

ForStatement:
for (ForInitopt ; Expressionopt ; ForUpdateopt) Statement

ForStatementNoShortIf:
for (ForInitopt ; Expressionopt ; ForUpdateopt) StatementNoShortIf

ForInit:
StatementExpressionList
LocalVariableDeclarations

ForUpdate:
StatementExpressionList

StatementExpressionList:
StatementExpression
StatementExpressionList , StatementExpression

BreakStatement:
break Identifieropt ;

ContinueStatement:
continue Identifieropt ;

ReturnStatement:
return Expressionopt ;

ThrowStatement:
throw Expression ;

SynchronizedStatement:
synchronized (Expression) Block

Syntax of Java 755

TryStatement:
try Block Catches
try Block Catchesopt Finally

Catches:
CatchClause
Catches CatchClause

CatchClause:
catch (FormalParameter) Block

Finally:
finally Block

B.10 Productions from Expressions

Primary:
PrimaryNoNewArray
ArrayCreationExpression

PrimaryNoNewArray:
Literal
this
(Expression)
ClassInstanceCreationExpression
FieldAccess
MethodInvocation
ArrayAccess

ClassInstanceCreationExpression:
new ClassType (ArgumentListopt)

ArgumentList:
Expression
ArgumentList , Expression

ArrayCreationExpression:
new PrimitiveType DimensionExpression DimensionExpressionopt
new ClassOrInterfaceType DimensionExpression DimensionExpressionopt

DimensionExpressions:
DimensionExpression
DimensionExpressions DimensionExpression

756 Appendix B

DimensionExpression:
[Expression]

Dimensions:
[]
Dimensions []

FieldAccess:
Primary . Identifier
super . Identifier

MethodInvocation:
Name (ArgumentListopt)
Primary . Identifier (ArgumentListopt)
super . Identifier (ArgumentListopt)

ArrayAccess:
Name [Expression]
PrimaryNoNewArray [Expression]

Postfix Expressions:
Primary
Name
PostIncrementExpression
PostDecrementExpression

PostIncrementExpression:
PostfixExpression ++

PostDecrementExpression:
PostFixExpression --

UnaryExpression:
PreIncrementExpression
PreDecrementExpression
+ Unary Expression
- Unary Expression
UnaryExpressionNotPlusMinus

PreIncrementExpression:
++ UnaryExpression

PreDecrementExpression:
-- UnaryExpression

Syntax of Java 757

UnaryExpressionNotPlusMinus:
PostfixExpression
~ UnaryExpression
! UnaryExpression
CastExpression

CastExpression:
(PrimitiveType Dimensionsopt) UnaryExpression
(Expression) UnaryExpressionNotPlusMinus
(Name Dimensions) UnaryExpressionNotPlusMinus

MultiplicationExpression:
UnaryExpression
MultiplicativeExpression * UnaryExpression
MultiplicativeExpression / UnaryExpression
MultiplicativeExpression % UnaryExpression

AdditiveExpression:
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

ShiftExpression:
AdditiveExpression
ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

RelationalExpression:
ShiftExpression
RelationalExpression < ShiftExpression
RelationalExpression > ShiftExpression
RelationalExpression <= ShiftExpression
RelationalExpression >= ShiftExpression
RelationalExpression instanceof ReferenceType

EqualityExpression:
RelationalExpression
EqualityExpression == RelationalExpression
EqualityExpression != RelationalExpression

AndExpression:
EqualityExpression
AndExpression & EqualityExpression

758 Appendix B

ExclusiveOrExpression:
AndExpression
ExclusiveOrExpression ^ AndExpression

InclusiveOrExpression:
ExclusiveOrExpression
InclusiveOrExpression | ExclusiveOrExpression

ConditionalAndExpression:
InclusiveOrExpression
ConditionalAndExpression && InclusiveOrExpression

ConditionalOrExpression:
ConditionalAndExpression
ConditionalOrExpression || ConditionalAndExpression

ConditionalExpression:
ConditionalOrExpression
ConditionalOrExpression ? Expression : ConditionalExpression

AssignmentExpression:
ConditionalExpression
Assignment

Assignment:
LeftHandSide AssignmentOperator AssignmentExpression

LeftHandSide:
Name
FieldAccess
ArrayAccess

AssignmentOperator: one of
= *= /= %= += -= <<= >>= >>>= &= ^= |=

Expression:
AssignmentExpression

ConstantExpression:
Expression

Source: The Java Language Specification, James Gosling, Bill Joy and Guy Steele,
Addison-Wesley 1996.

Syntax of Java 759

This page intentionally left blank

A P P E N D I X C

Answers to Exercises
Chapter 1
27. Figure 1.14—Zone is an integer; One-way, Half-fare, Monthly-pass, and Family-fare

are all real numbers.

int zone;
float oneWay, halfFare, monthlyPass, familyFare;

28. (b) net-pay (Embedded hyphen is illegal.)

(d) cost of paper (Embedded spaces are illegal.)

(f) ?X?Y (Characters other than alphabetic, numeric digits, underscore, or $ are illegal.)

(g) 1856AD (Identifier must begin with a nondigit legal character.)

(h) float is a keyword, and therefore an illegal identifier.

29. (a) int (b) char (c) int (d) long (e) double (f) float
(g) int (h) float

30. (a) 0041 (b) 004D (c) 002A (d) 0061 (e) 006D (f) 0039

31. (a) �8.74458E+02 (b) +1.23456E-03 (c) 1.23456789E+08

32. (a) 2 (b) 2.5f (c) 26 (d) 38

33. (a) final int INT_NUMBER = �45678;

(b) final int HEX_NUMBER = 0xFABC;

(c) final double PI = 3.14159;

(d) final char UNI_CHAR = '\u0041';

761

34. (a) 255 (b) 6700 (c) 0 � 73 (d) 0 � 730F

35. (a) A B C D

36 36 36 36

(b) A B C D

10 14 29 89

(c) A B

48 50

(d) X Y

19 �13

(e) X Y Z

18 3 54

(f) A B

12.5 2.0

(g) A B X (assuming A, B, and X are integers)

16 3 5

(h) C D Y

19 5 4

(i) D

35

36. (a) (A+B)/C

(b) (W�X)/(Y+Z)

(c) (D�B)/(2*A)

(d) (A*A+B*B)/2

(e) (A�B)*(C�D)

(f) B*B�(4*A*C)

(g) (A*X*X)+(B*X)+C

37. (a) X+(2/Y)+4

(b) (A*B)/(C+2)

(c) (U/V)*(W/X)

(d) (B*B)�(4*A*C)

(e) (A/B)+(C/D)+(E/F)

762 Appendix C

Chapter 2
14. Figure 2.13—city is a string; high and low temperatures are both integers; abbreviations are strings.

String city;
int high, low;
String weatherCondition;

15. (a) Object screen missing.

(b) Wrong number of arguments in constructor—normally one argument expected.

(c) Wrong number of arguments in constructor—normally four arguments expected.

(d) Wrong data type in argument list—screen is an Window object and not a string literal.

(e) Wrong number of arguments in the constructor—object for container class is missing.

(f) Wrong number of arguments in the constructor—prompt is missing.

16. Note in the answers that the underscore _ represents the position of the cursor.

(a) Hello World_

(b) name: _

(c) name: Mickey Mouse_

(d) a=3 b=4 c=5

_

(e) area covered 635.8658_

(f) ABC_

17. (a) Missing parentheses () in method getString.

(b) Wrong method—should be getInteger(). Alternatively, wrong type—should be float.

(c) Wrong method—should be getString(). Alternatively, wrong type—should be char.

(d) Type double begins with a lowercase d, not spelled as Double.

(e) Wrong method—should be getFloat(). Alternatively, wrong type—should be double.

Chapter 3
35. 25 Note that the method returns the sum of A and B.

36. Hello World Note: The argument Hello World is passed to the parameter message. The cursor moves to the
next line.

37. 38 Note: The arguments 25 and 13 are passed to the parameters A and B.

29 Note: The arguments 12 and 17 are passed to the parameters A and B.

38. [valueOnly] A=40 B=30

[main] A=41 B=29

Answers to Exercises 763

39. (a) Missing parentheses in call to alpha—should be alpha();

(b) No formal parameter list in the method beta.

(c) The order of the arguments is wrong—an integer argument must follow a character argument in the method
call to delta.

(d) The data type of the arguments in the call to gamma do not match the formal parameters in the method
gamma. The formal parameter is an array of integers, yet the actual parameters are two variables.

`40. The method alpha does not return a value (void); therefore, return 2*number cannot be possible. The method
signature should be changed to: static int alpha(int number);

41. 56 Note: The class scope version of global is hidden by the declaration within the block.

42. value of x is 0

value of x is 1

value of x is 2

43. value of x is 0

value of x is 1

value of x is 1

Chapter 4
15. (a) false (b) true (c) true (d) true (e) true (f) true (g) true

16. (a) X==Y (b) X!=Y (c) A<=B (d) Q<=T (e) X>=Y (f) (X<=Y && A!=B)

(g) (A>18 && H>68 && W>75) (h) (G<100 && G>50) (i) (H<50 || H>100)

17.

A B C output

(a) 16 16 32 y

(b) 16 �18 32 x

(c) �2 �4 16 z

18. (a) capital letters (b) error in data (c) small letters

19.

if (y > 25)
{

x = 16;
screen.write("x = " + x);

}
else

y = 20;

764 Appendix C

20.

1. input length of side 1

2. input length of side 2

3. input length of side 3

4. input length of side 4

5. input internal angle

6. if internal angle is a right angle

7. if side 1 equals side 2 and side 2 equals side 3 and side 3 equals side 4

8. output square

9. else if side 1 equals side 3 and side 2 equals side 4

10. output rectangle

11. else

12. output irregular

13. else

14. if side 1 equals side 2 and side 2 equals side 3 and side 3 equals side 4

15. output rhombus

16. else if side 1 equals side 3 and side 2 equals side 4

17. output parallelogram

18. else

19. output irregular

Test Data

side 1 side 2 side 3 side 4 internal angle

1 1 1 1 90

1 2 1 2 90

1 1 1 1 120

1 2 1 2 120

1 1.5 2 1.75 90

1 1.5 2 1.75 120

Answers to Exercises 765

Desk Check

side 1 1 1 1 1

side 2 1 2 1 2

side 3 1 1 1 1

side 4 1 2 1 2

internal angle 90 90 120 120

right angle? true true false false

all sides equal? true false true false

opposite sides equal? true true

shape square rectangle rhombus parallelogram

side 1 1 1

side 2 1.5 1.5

side 3 2 2

side 4 1.75 1.75

internal angle 90 120

right angle? true false

all sides equal? false false

opposite sides equal? false false

shape irregular irregular

Chapter 5
18. Output from the while loop is

1 3 5 7 9

19. The loop is a validation loop; termination from the loop is only possible when a digit in the range 0 to 9 is input.

20. Output from the for loop is the alphabet in lowercase.

abcdefghijklmnopqrstuvwxyz

21. (a) This is a classical error of placing a semicolon after the condition in the while loop. The result of this error is
to create an infinite loop.

(b) This is a similar error to that found in (a); the semicolon at the end of the statement

for (i=10; i>0; i--);

766 Appendix C

marks the end of the scope of the for statement. The behavior of the segment of code differs from that of (a).
The value of i will be counted down to zero, and the line T minus 0 and counting will be output.

22.

for (int x=30; x>=3; x--)
screen.write(x);

23.

1. input decimal number D

2. do

3. divide D by 16 giving quotient Q and remainder R

4. if remainder R > 9

5. R is assigned the character whose decimal code is R+55

6. else

7. R is assigned the character whose decimal code is R+48

8. output R as the next least significant digit of the hexadecimal value

9. assign Q to D

10. while Q is not zero

Desk Check

D 3947 246 15

Q 246 15 0

R 11 66 6 54 15 70

R>9? true false true

output B 6 F

Q != 0 true true false

Note: By adding 48 to R, you are creating the decimal code for the character that represents the digit R; by adding 55 to
R, you are creating the decimal code for the character that represents the hexadecimal digit from A..F.

The value of the remainder is displayed with the least significant digit of the hexadecimal number first and finally the
most significant digit last. Therefore, when it comes to writing a program for this algorithm, it is necessary to reverse
the output, by printing from right to left and not left to right in the conventional sense.

Answers to Exercises 767

24.

alpha[0] �10

alpha[1] 16

alpha[2] 19

alpha[3] �15

alpha[4] 20

index 0 1 2 3 4 5

value 0 �10 6 25 10 30

The final value of the identifier value is 30.

25. �31

26. The type declaration is wrong. The correct answer is:

String string = "abracadabra";

27. The method toCharArray() will store a string as a sequence of characters in a one-dimensional array. Therefore,
the string “Ten green bottles standing on the wall.” will be stored as consecutive characters in the character array
string as follows.

string[0] T

string[1] e

string[2] n

string[3] (space)

string[4] g

.

.

28. Length of the array string is 39.

29.

numbers[0] 5 5

numbers[1] 2 2

numbers[2] 8 8

numbers[3] 7 8 8

numbers[4] 0 2 2

numbers[5] 3 5 5

left 0 1 2 3

right 5 4 3 2

left <= right? true true true false

768 Appendix C

Chapter 6
40. In this answer it is necessary to create a private helper method to return whether a rational number is positive, in

addition to the public method that tests whether one rational number is greater than another rational number.

private boolean positive(Rational number)
{

return (number.numerator > 0 && number.denominator > 0);
}

public boolean greaterThan(Rational x)
{

if (positive(this) && !positive(x)) return true;
if (!positive(this) && positive(x)) return false;

// subtract rational numbers
numerator = this.numerator * x.denominator -

x.numerator * this.denominator;
denominator = this.denominator * x.denominator;

// create temporary rational number
Rational difference = new Rational(numerator, denominator);

if (positive(this) && positive(x) && positive(difference))
return true;

if (positive(this) && positive(x) && !positive(difference))
return false;

if (!positive(this) && !positive(x) && positive(difference))
return true;

if (!positive(this) && !positive(x) && !positive(difference))
return false;

return true;
}

41. The output from the program is:

A
B
C

A hierarchical relationship exists between the classes A, B, and C. When the constructor for class C is invoked, the
system will automatically chain the constructor calls to classes B and A. The constructor in class A is executed first,
followed by the constructor for class B and finally the constructor for class C.

Answers to Exercises 769

42. The output from the program is:

X in class C 45
X in class C 45
X in class B 35
X in class B 35
X in class A 25

This problem is all about how to access shadowed variables in a hierarchy of classes. Variable X in class C may be
accessed directly using the name X, or by using the implicit this object, this.X. Access to the variable X in class B
(the superclass of class C) is made possible by using the reserved word super, super.X. Access is also possible by
casting class B, ((B)this).X. A similar technique is used to access the variable X in class A, ((A)this).X.

43. The output from the program is:

value of X in class A 25
value of X in class B 35

This is a problem of accessing shadowed variables and overriding superclass methods. The variable object of type B
is instantiated. The call to getX invokes the instance method in class B, which calls the getX method from class A.
The getX method in class A returns the value of X (25) in A. This value is displayed from class B. The computer
then returns the value of the variable X (35) in B to the main method. The value of X from class B is then dis-
played.

44. The output from the program is:

value of constant from interface A 65
value of constant from class B 45

This is a problem of accessing constants from an interface and a class. Since class C implements the interface A,
the constants defined in the interface may be used without qualification in class C. However, since there is no hier-
archical relationship between class B and class C, it is necessary to qualify the constant from class B.

45. The output from the program is:

value of constant from interface A 65
value of constant from interface B 75
value of constant from interface C 85

This is a problem of inheritance of constants from interfaces. Interface C inherits from interface A and from inter-
face B. This implies that the constants from both interfaces are now accessible in interface C. Class D implements
interface C and therefore has access to all the constants defined in interfaces A, B, and C.

Chapter 7
25. A catch block must immediately follow the corresponding try block.

26. The declaration of the object input has taken place in a try block, and consequently is not visible outside of this
block. Any attempt to access the variable input outside of the try block will generate a syntax error.

27. Yes. The outer try block is followed by a catch block, and the inner try block is followed by a catch block; therefore,
the structure is legal.

770 Appendix C

28. The class Error is not a superclass of either the classes ArithmeticException or ArrayStoreException;
therefore, the instanceof operator is not valid.

29. The statements are legal; however, the class Throwable, in the first catch block, is the superclass of all the classes
in the subsequent catch blocks. As a consequence, only the first block will ever be executed when an exception is
raised. The superclass should appear as the last class in this program segment. The arrangement of the classes in
the blocks should be ClassNotFoundException, InterruptedException, Exception, and Throwable.

30. The throw and throws clauses should be interchanged. A throws clause lists the exceptions that can be thrown by a
method. The throw statement explicitly invokes an exception. The throw statement must instantiate an exception
object to be thrown.

31. Desk-checking the code shows that the value of the index goes out of bounds as soon as it becomes 5. The excep-
tion to cause the catch block to be executed is ArrayIndexOutOfBoundsException.

32. Note in the following answers that the underscore _ represents the position of the cursor.

(a) Hello World

_

(b) name:

_

(c) name: Mickey Mouse

_

33.

(a) a=3 b=4 c=5

_

(b) area covered 635.8658_

(c) ABC

_

34.

(a) The object dosWindow is missing; the comma should be replaced by a +:

dosWindow.println("value of beta is " + beta);

(b) The delimiters should be double quotes: "X".

(c) The wrapper class should be Integer.

Answers to Exercises 771

35.

(a) Hierarchy diagram for the wrapper class java.lang.Float:

(b) Hierarchy diagram for the class java.io.BufferedOutputStream:

Chapter 8
22. The TextInput class should include the following methods.

public int getInteger() throws NumberFormatException
{

return new Integer(inputDatum).intValue();
}

OutputStream

FilterOutputStream

Object

BufferedOutputStream

Number

Float

Object

772 Appendix C

public float getFloat() throws NumberFormatException
{

return new Float(inputDatum).floatValue();
}

23.

import java.awt.*;
import java.awt.event.*;

public class InputBox extends Dialog implements ActionListener
{

// constants
private static final int FONT_SIZE = 11;
private static final int HEIGHT_OF_BAR = 20;
private static final String EMPTY_STRING = "";
private static final int NUMBER_OF_ITEMS = 1;

// instance variables
private String inputDatum;
private TextField datum;
private Label textLabel;

public InputBox(Frame parent, String prompts)
{

super(parent, " Input the following datum .. then CLOSE",
true);

addWindowListener(new CloseInputBox());

// set width and height of screen
int screenWidth = parent.getWidth();
int screenHeight = parent.getHeight();

// set location and size of dialog box
int xLocationOfBox = (int)(0.4f * screenWidth);
int yLocationOfBox = (int)(0.1f * screenHeight);
int widthOfBox = (int)(0.4f * screenWidth);

int heightOfBox =
(int)(screenHeight/36)*(NUMBER_OF_ITEMS)+6*HEIGHT_OF_BAR;

// set location and size of label
int xLocationOfLabel = (int)(0.05f * widthOfBox);
int yLocationOfLabel = (int)(2.0f * screenHeight/36);
int widthOfLabel = (int)(0.2f * widthOfBox);
int heightOfLabel = (int)(screenHeight/36);

Answers to Exercises 773

// set location and size of text field
int widthOfField = (int)(0.65f * widthOfBox);
int heightOfField = (int)(screenHeight/36);
int xLocationOfField = (int)(0.3f * widthOfBox);
int yLocationOfField =
(int)(2*HEIGHT_OF_BAR+(int)(heightOfField/4));

// draw dialog box
this.setLayout(null);
this.setBackground(Color.lightGray);
this.setForeground(Color.blue);
this.setLocation(xLocationOfBox,yLocationOfBox);
this.setSize(widthOfBox,heightOfBox);

// insert label and text field
textLabel = new Label(prompts, Label.LEFT);
textLabel.setLocation(xLocationOfLabel, yLocationOfLabel);
textLabel.setSize(widthOfLabel, heightOfLabel);
this.add(textLabel);

datum = new TextField(EMPTY_STRING, widthOfField);
datum.setLocation(xLocationOfField, yLocationOfField);
datum.setSize(widthOfField, heightOfField);
this.add(datum);

// set location and size of "CLEAR" button
int xLocationOfResetButton = (int)(0.4f*widthOfBox);
int yLocationOfResetButton = (int)(0.8f*heightOfBox);
int widthOfButton = (int)(0.8f*widthOfLabel);
int heightOfButton = (int)(heightOfLabel);

// create button
Button resetButton = new Button("CLEAR");
resetButton.setLocation(xLocationOfResetButton,

yLocationOfResetButton);
resetButton.setSize(widthOfButton, heightOfButton);
resetButton.setBackground(Color.lightGray);
resetButton.setForeground(Color.black);

// add push button to dialog box and action listener for button
this.add(resetButton);
resetButton.addActionListener(this);

}

774 Appendix C

public void showInputBox()
{

this.setVisible(true);
}

public String getInput()
{

return inputDatum;
}

public void actionPerformed(ActionEvent event)
{

if (event.getActionCommand().equals("CLEAR"))
{

datum.setText(EMPTY_STRING);
inputDatum = EMPTY_STRING;

}
}

public class CloseInputBox extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

inputDatum = new String(datum.getText());
datum.setText(EMPTY_STRING);
InputBox.this.setVisible(false);

}
}

}

class Chap8Ans23
{

public static void main(String[] args)
{

WindowPane screen = new WindowPane();
screen.showWindowPane();

InputBox data = new InputBox(screen,"Name");
data.showInputBox();

System.out.println(data.getInput());
}

}

Answers to Exercises 775

24.

import java.awt.*;
import java.awt.event.*;

public class Slider extends Dialog implements AdjustmentListener
{

private static final String SPACE = " ";
private static final int FONT_SIZE = 12;

private TextField position;
private int value;
private String cue;

public Slider(Frame parent, String prompt, int minValue,
int maxValue, int increment) throws Exception
{

super(parent, " Move slider, then CLOSE ..", true);

if (increment <= 0 || minValue >= maxValue)
throw new Exception("Incremental value out of range");

addWindowListener(new CloseSlider());
cue = prompt;

// set and assign fonts
Font dialog = new Font("Dialog", Font.BOLD, FONT_SIZE);
Font dialogInput = new
Font("DialogInput", Font.PLAIN, FONT_SIZE);

// set width and height of screen
int screenWidth = parent.getWidth();
int screenHeight = parent.getHeight();

// set location and size of dialog box
int xLocationOfBox = (int)(0.7f * screenWidth);
int yLocationOfBox = (int)(0.1f * screenHeight);
int widthOfBox = (int)(0.25f * screenWidth);
int heightOfBox = (int)(0.125f * screenHeight);

// set location and size of label
int xLocationOfLabel = (int)(0.1f * widthOfBox);
int yLocationOfLabel = (int)(0.3f * heightOfBox);
int widthOfLabel = (int)(0.6f * widthOfBox);
int heightOfLabel = (int)(0.25f * heightOfBox);

776 Appendix C

// set location and size of text field
int xLocationOfField = (int)(0.7f * widthOfBox);
int yLocationOfField = (int)(0.3f * heightOfBox);
int widthOfField = (int)(0.19f * widthOfBox);
int heightOfField = (int)(0.25f * heightOfBox);

// set location and size of slider
int xLocationOfSlider = (int)(0.1f * widthOfBox);
int yLocationOfSlider = (int)(0.6f * heightOfBox);
int widthOfSlider = (int)(0.8f * widthOfBox);
int heightOfSlider = (int)(0.2f * heightOfBox);

// initial position of slider
int initialValue = (int)(minValue+maxValue)/2;

// set parameters of dialog box
this.setBackground(Color.lightGray);
this.setForeground(Color.black);
this.setLocation(xLocationOfBox,yLocationOfBox);
this.setSize(widthOfBox, heightOfBox);

// draw slider
Scrollbar slide = new
Scrollbar(Scrollbar.HORIZONTAL, initialValue,

increment, minValue, maxValue+increment);
setLayout(null);
slide.setLocation(xLocationOfSlider, yLocationOfSlider);
slide.setSize(widthOfSlider, heightOfSlider);
slide.setBackground(Color.white);
slide.setUnitIncrement(increment);
add(slide);

// display title
Label title = new Label(prompt);
title.setLocation(xLocationOfLabel,yLocationOfLabel);
title.setSize(widthOfLabel,heightOfLabel);
title.setFont(dialog);
add(title);

// display position of slider
value = initialValue;
position = new TextField();
position.setLocation(xLocationOfField, yLocationOfField);
position.setSize(widthOfField, heightOfField);
position.setBackground(Color.white);

Answers to Exercises 777

position.setForeground(Color.blue);
position.setText(SPACE+String.valueOf(value));
position.setEditable(false);
position.setFont(dialogInput);
add(position);

slide.addAdjustmentListener(this);

}

public void showSlider()
{

this.setVisible(true);
}

public int getValue()
{

return value;
}

public void adjustmentValueChanged(AdjustmentEvent event)
{

value = event.getValue();
position.setText(SPACE+String.valueOf(value));

}

public class CloseSlider extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

Slider.this.setVisible(false);
}

}
}

25.

// chap_8\Ans_25.java
// lists and text areas

import java.awt.*;
import java.awt.event.*;

class Gui extends Frame implements ItemListener
{

778 Appendix C

static final int NUMBER_OF_MENU_ITEMS = 10;
static final int MAX_SELECTION = 3;

List countries = new List(NUMBER_OF_MENU_ITEMS, true);
TextArea selection = new TextArea();
int counter = 0;

static String[] countryNames = {"Australia","Brazil",
"Chile","France","Greece",
"Japan","Norway","Spain",
"Switzerland","Zimbabwe"};

public Gui(String s)
{
super(s);
setBackground(Color.yellow);
setLayout(null);

// display list
setUpList();

// display selection
add(selection);
addWindowListener(new CloseWindow());
}

// method to display the countries on screen
private void setUpList()
{

for (int index=0; index != NUMBER_OF_MENU_ITEMS; index++)
{

countries.add(countryNames[index]);
}

countries.setLocation(10,50);
countries.setSize(100,50);
add(countries);
countries.addItemListener(this);

}

Answers to Exercises 779

// method to display the selected countries
private void displaySelection()
{

int[] listArray = countries.getSelectedIndexes();

selection.setLocation(200,50);
selection.setSize(100,75);
selection.setEditable(false);

// display selected countries
for (int index=0; index != listArray.length; index++)
{

selection.append(countries.getItem(listArray[index])+"\n");
}

}

private class CloseWindow extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

System.exit(0);
}

}

// method to detect when a selection has been made and increase
// the counter by 1; when three countries have been selected
// display the selection in a text area
public void itemStateChanged(ItemEvent event)
{

if (event.getStateChange() == ItemEvent.SELECTED) counter++;

if (counter==MAX_SELECTION)
{

displaySelection();
}

}
}

class Chap8Ans25
{

public static void main(String[] args)

780 Appendix C

{
Gui screen = new Gui("Example 25");

screen.setSize(400,200);
screen.setVisible(true);

}
}

26. BorderLayout is the default layout manager for Windows and the Window subclass Frame. There are up to five
areas in a BorderLayout. When all five are used, the arrangement will look like that pictured below. If the East or
West areas are missing, the Center expands to fill up the space. If the North or South are missing, the Center and
East/West fill the remaining space.

The signatures of the constructors are:

public BorderLayout();
public BorderLayout(int hgap, int vgap);

There are a set of static constants NORTH, SOUTH, EAST, WEST, and CENTER used to position elements
in the container.

Components can be added to the container using the add method inherited from the Container class whose sig-
nature is given as:

public void add(Component comp, Object constraints);

where constraints can be one of the static constants to define the position of the component.

An example program follows.

import java.awt.*;
import java.awt.event.*;

class DirectionalButtons extends Frame implements ActionListener
{

public DirectionalButtons(int width, int height, int x, int y)
{

super();

setSize(width, height);

Answers to Exercises 781

setLocation(x,y);
addWindowListener(new CloseWindow());

setLayout(new BorderLayout());

String[] direction = {"North","South","East","West","Center"};
Button[] button = new Button[direction.length];

for (int index=0; index != direction.length; index++)
{

button[index] = new Button(direction[index]);
button[index].addActionListener(this);

}

add(button[0], BorderLayout.NORTH);
add(button[1], BorderLayout.SOUTH);
add(button[2], BorderLayout.EAST);
add(button[3], BorderLayout.WEST);
add(button[4], BorderLayout.CENTER);

}

public void showButtons()
{

this.show();
}

public void actionPerformed(ActionEvent event)
{

System.out.println(event.getActionCommand());
}

private class CloseWindow extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

DirectionalButtons.this.dispose();
System.exit(0);

}
}

}

public class Chap8Ans26
{

public static void main(String[] args)

782 Appendix C

{
DirectionalButtons buttons = new
DirectionalButtons(200,150,50,50);
buttons.show();

}
}

Chapter 9
21.

(a) contains—tests if the specified object is a component in this vector.

(b) copyInto—copies the components of this vector into the specified array.

(c) isEmpty—tests if this vector has no components.

(d) lastIndexOf—returns the index of the last occurrence of the specified object in this vector.

22. Vector dataStore = new Vector(1); instantiate the object dataStore containing 1 cell.

dataStore.addElement("Sybil"); insert the string "Sybil" into cell 0

dataStore.addElement("Basil"); the vector will double in size, to just 2 cells, and the string "Basil"
will be inserted into cell 1

dataStore.addElement("Polly"); the vector will double in size, to just 4 cells, and the string "Polly"
will be inserted into cell 2.

23.

// chap_9\Ans_23.java
// program to input RGB color data via three text fields
// and display the color in a rectangle

import java.awt.*;
import java.awt.event.*;
import java.io.*;

class Gui extends Frame implements ActionListener
{

static PrintWriter screen = new PrintWriter(System.out,true);

// define name and size of each text field
TextField red = new TextField(5);
TextField green = new TextField(5);
TextField blue = new TextField(5);

// initialize the contents of each text field
String redField ="0";
String greenField ="0";

Answers to Exercises 783

String blueField ="0";

Color value;

// constructor
public Gui(String s)
{

super(s);
setLayout(new FlowLayout());

// display text fields
add(new Label("Red "));
add(red);
red.addActionListener(this);

add(new Label("Green "));
add(green);
green.addActionListener(this);

add(new Label("Blue "));
add(blue);
blue.addActionListener(this);

addWindowListener(new CloseWindow());
}

// if numeric value for color is not in range return
// zero, otherwise return value of color
static int validateColor(int colorValue)
{

if (colorValue < 0 || colorValue > 255)
return 0;

else
return colorValue;

}

public void actionPerformed(ActionEvent event)
{

Graphics g = getGraphics();

int redValue, greenValue, blueValue;

// capture data
if (event.getSource() == red)

redField = new String(red.getText());

784 Appendix C

if (event.getSource() == green)
greenField = new String(green.getText());

if (event.getSource() == blue)
blueField = new String(blue.getText());

// convert captured data to numbers and validate value
redValue = validateColor(new Integer(redField).intValue());
greenValue = validateColor(new Integer(greenField).intValue());
blueValue = validateColor(new Integer(blueField).intValue());

// create an RGB color
value = new Color(redValue, greenValue, blueValue);

// display color
g.setColor(value);
g.fillRect(100,100,300,50);

}

private class CloseWindow extends WindowAdapter
{

public void windowClosing(WindowEvent event)
{

System.exit(0);
}

}
}

class Chap9Ans23
{

public static void main(String[] args)
{

Gui screen = new Gui("Answer 23");

screen.setSize(500,200);
screen.setVisible(true);

}
}

24.

// chap_9\Ans_24.java
// program to simulate a directional compass

import java.awt.*;
import java.awt.event.*;

Answers to Exercises 785

class Gui extends Frame implements MouseMotionListener
{

// center of compass
int x=500;
int y=400;

// half-length of compass needle
int halfLength=50;

// old coordinates of mouse prior to new position
int xOld = 0;
int yOld = 0;

// constructor
public Gui(String s)
{

super(s);
addMouseListener(new HandleMouseEvents());
addMouseMotionListener(this);

}

public void mouseDragged(MouseEvent event){}

public void mouseMoved(MouseEvent event)
{

// get current coordinates of mouse
int xValue=event.getX();
int yValue=event.getY();

// erase old position of compass needle
drawNeedle(xOld,yOld,Color.white);
// draw new position of compass needle
drawNeedle(xValue, yValue, Color.red);
drawCompassPoints();

}

// draw a needle on the screen using the color hue, at the
// position corresponding to the coordinates of the mouse
public void drawNeedle(int xValue, int yValue, Color hue)
{

Graphics g = getGraphics();

double angle;

786 Appendix C

int vertDist, horizDist;
int x1,y1,x2,y2;

// calculate the angle of compass needle to the horizontal
angle = Math.atan((double)Math.abs(yValue-y)/Math.abs(xValue-x));

// calculate the horizontal and vertical distances of the tip of the
// needle from the centre of the needle
vertDist = (int)(halfLength * Math.sin(angle));
horizDist = (int)(halfLength * Math.cos(angle));

// calculate the coordinates of the ends of the compass needle with
// respect to the position of the mouse
if ((xValue>x && yValue<y) || (xValue<x && yValue > y))
{

x1=x-horizDist; y1=y+vertDist;
x2=x+horizDist; y2=y-vertDist;

}
else
{

x1=x-horizDist; y1=y-vertDist;
x2=x+horizDist; y2=y+vertDist;

}

// draw the compass needle
g.setColor(hue);
g.drawLine(x1,y1,x2,y2);

// store the current coordinates of the mouse
xOld=xValue;
yOld=yValue;

}

// display the points of the compass
private void drawCompassPoints()
{

Graphics g = getGraphics();

g.setColor(Color.black);
g.drawLine(x-30,y,x+30,y);
g.drawLine(x,y-50,x,y+50);
g.drawString("N",x-4,y-52);
g.fillOval(x-2,y-2,4,4);

}

Answers to Exercises 787

private class HandleMouseEvents extends MouseAdapter
{

public void mousePressed(MouseEvent event)
{

System.exit(0);
}

}
}

class Chap9Ans24
{

public static void main(String[] args)
{

Gui screen = new
Gui("Example 24 .. PRESS MOUSE BUTTON TO CLOSE WINDOW");

screen.setSize(1000,800);
screen.setVisible(true);

}
}

Chapter 10
19.

lang

java

awt

applet

788 Appendix C

20.

(a)

(b)

(c)

(d)

21. The contents of the CRC cards are by no means final. The answer is intended to promote further discussion about
the relationships and methods of the classes.

2

HalfAdder

OR gate AND gate NOT gate

Company
1 1..*

Department

* 1..*
Employee

WorksFor
Company

Polygon
1 3..*

Side

Answers to Exercises 789

Student

Responsibilities Collaborators

create student

get student

assign to course

get courses

get results

Course

Department

Responsibilities Collaborators

add instructor

remove instructor

get instructor

get all instructors

Instructor

Instructor

School

Responsibilities Collaborators

add student

remove student

get student

get all students

Student

add department Department

Student

remove department

get department

get all departments

Department

790 Appendix C

22. The instances of the following classes are intended to live in a database or a serializable file that is used to create
arrays or vectors.

1 1..*
1..*

*

1..*

1..*

1..*

*

*

*

School Department

Student Instructor

Course

Member

Has

Teaches

Attends

Assigned To

Course

Responsibilities Collaborators

create course

get course

get assessment criteria

get instructor

get students on course Student

Instructor

Instructor

Responsibilities Collaborators

create instructor

get instructor

assign to course

get courses taught

Course

Answers to Exercises 791

23. The contents of the CRC cards are by no means final. The answer is intended to promote further discussion about
the relationships and methods of the classes.

BankAccount

Responsibilities Collaborators

get balance

deposit

withdraw

Bank

Responsibilities Collaborators

search for customer

get customer details Customer

Customer

ATM

Responsibilities Collaborators

find customer

find account

withdraw

Customer, BankAccount,

deposit BankAccount, Keypad

Bank, Customer, Keypad

Keypad

BankAccount, Keypad

792 Appendix C

24. The aggregation relationships follow from:

■ a bank has-(a) customer

■ a customer has-(a) accounts

■ an ATM has-(a) keypad

The dependencies are obtained from the collaborator columns of the CRC cards:

■ ATM uses Keypad, Bank, Customer, and BankAccount

■ Bank uses Customer

Note: The aggregations are regarded as stronger relationships than the dependencies when drawing the class dia-
gram; hence Bank and Customer are drawn as an aggregation and not a dependency.

Keypad

Responsibilities Collaborators

get value input

Customer

Responsibilities Collaborators

get customer account

match a/c number

match PIN

BankAccount

Answers to Exercises 793

Chapter 11
26. The resource descriptor and separator are missing. The correct URL is:

http://java.sun.com

27. The HTML, APPLET, and BODY tags are not nested correctly; there is no width and height specified for the applet
window. The filename for the applet is incorrect; it should refer to the bytecode file and not the java source code
file. The correct code is:

<HTML>
<BODY>
<APPLET code=Ex_27.class width=900 height=300>
</APPLET>
</BODY>
</HTML>

28. The HTML file provides a parameter for the applet. The value of the parameter is a URL. The applet attempts to link
to the Web site specified by the URL and display the home page of the site. If the URL is incorrect, the computer
will exit from the applet.

To change the URL, and hence change the Web site to visit, simply edit the value specified in the HTML file.

29. If the code in the question represents the contents of the source file, then the need to import classes from the pack-
ages java.awt and java.applet is absent.

The name given to the applet class must match the name given to the applet file. It might be better to rename the
class Ans_29, and hence the filename as Ans_29.java.

The variable name is not initialized in the declaration. Without any parameter passing from the corresponding
HTML file, the name cannot take a value and will result in a run-time error.

1

1

1
1

1..*

1..*

1..*

1..*

Keypad

BankAccount

Bank

Customer

ATM

794 Appendix C

http://java.sun.com

The paint method must take a formal parameter of type Graphics. This parameter is absent from the methods
setFont, setColor, and drawString.

A string terminator " is missing after the font name Monospaced.

The drawString method does not contain coordinates describing where to draw the string on the screen.

30.

// chap_11\Ans_30.java

import java.awt.*;
import java.applet.*;

public class Ans_30 extends Applet
{

String name;

public void init()
{

name = getParameter("name");
}

public void paint(Graphics g)
{

Font font = new Font("Monospaced", Font.ITALIC, 36);

g.setFont(font);
setBackground(Color.yellow);
g.setColor(Color.red);
g.drawString(name, 75,100);

}
}

<HTML>
<BODY>

<APPLET code=Ans_30.class width=700 height=250>
<PARAM NAME=name VALUE="Programming with Java">
</APPLET>
</BODY>
</HTML>

Answers to Exercises 795

31.

// chap_11\Ans_31.java

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class Ans_31 extends Applet implements ActionListener
{

TextField nameField = new TextField(30);

public void init()
{

add(new Label("NAME "));
add(nameField);
nameField.addActionListener(this);
setBackground(Color.yellow);

}

public void actionPerformed(ActionEvent event)
{

Font font = new Font("Monospaced", Font.ITALIC, 36);
String name = nameField.getText();

Graphics g = getGraphics();

g.setFont(font);
g.setColor(Color.red);
g.drawString(name,75,100);

}
}

<HTML>
<BODY>
<APPLET code=Ans_31.class width=700 height=250>
</APPLET>
</BODY>
</HTML>

32. The error is forgetting to include the dot (.) separator between the name of the file and the postfix abbreviation.
For example, the file is normally referred to by dialtone.au; the coding source+"au" will result in the filename
being constructed as dialtoneau, which of course does not exist. The code requires an amendment of
source+".au".

796 Appendix C

33. Values from the two-dimensional array are 5, 12, and 9, respectively.

Value of the variable sum is 143 .

34.

// chap_11/Ans_34.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class Chap11Ans34 extends Applet implements ItemListener
{

// array for uv index
String[] uvIndex = {"0..2","3..4","5..7","8..9","9+"};

// array for skin category
String[] skinCat = {"1","2","3","4"};

CheckboxGroup cb1 = new CheckboxGroup();
CheckboxGroup cb2 = new CheckboxGroup();

Checkbox[] uvIndexRanges = new Checkbox[uvIndex.length];
Checkbox[] skinCatData = new Checkbox[skinCat.length];

// 2-D array for storing sun protection factor
int[][] sunProtFact =
{{3,2,2,1},{6,4,3,2},{11,8,5,4},{14,10,7,5},{18,12,8,7}};

int uv=0, category=0;
TextField spf = new TextField();

public void init()
{

setLayout(new GridLayout(10,5));
setBackground(Color.red);

Label uvRange = new Label("uv range");
add(uvRange);

for (int index=0; index != uvIndex.length; index++)
{

uvIndexRanges[index] = new
Checkbox(uvIndex[index],false,cb1);
add(uvIndexRanges[index]);
uvIndexRanges[index].addItemListener(this);

}

Answers to Exercises 797

uvIndexRanges[0].setState(true);

Label skin = new Label("skin category");
add(skin);

for (int index=0; index != skinCat.length; index++)
{

skinCatData[index] = new
Checkbox(skinCat[index],false,cb2);
add(skinCatData[index]);
skinCatData[index].addItemListener(this);

}

skinCatData[0].setState(true);

spf.setBackground(Color.yellow);
add(spf);
spf.setText("SKIN PF = "+
String.valueOf(sunProtFact[uv][category]));

}

public void itemStateChanged(ItemEvent event)
{

if (event.getStateChange() == ItemEvent.SELECTED)
{

String item = (String)event.getItem();

for (int index=0; index != uvIndex.length; index++)
{

if (item.equals(uvIndex[index])) uv=index;
}

for (int index=0; index != skinCat.length; index++)
{

if (item.equals(skinCat[index])) category=index;
}

spf.setText("SKIN PF = "+
String.valueOf(sunProtFact[uv][category]));

}
}

}

798 Appendix C

35. The errors are as follows:

The applet needs to implement the Runnable interface, and the run() method must be overridden in the applet.
Without this implementation the code of a thread cannot be executed.

There is no code to correctly start a thread or stop a thread.

The reference to a thread sleeping, without any means of trapping an interrupted exception, will generate a syntax
error.

The correct solution to this program follows.

// chap_11\Ans_35.java

import java.awt.*;
import java.applet.*;

public class Ans_35 extends Applet implements Runnable
{

Thread appletThread;

int length=1;

public void start()
{

if (appletThread == null)
{

appletThread = new Thread(this);
appletThread.start();

}
}

public void run()
{

while (true)
{

repaint();
length++;

try{Thread.sleep(50);}
catch(InterruptedException i){System.exit(1);}

}
}

public void stop()
{

if (appletThread != null)

Answers to Exercises 799

{
appletThread.stop();
appletThread=null;

}
}

public void paint(Graphics g)
{

//g.setColor(Color.black);
g.fillRect(10,50,length,5);

}
}

Chapter 12
10.

// chap_12\Ans_10.java
// program to demonstrate the creation and maintenance of a FIFO queue using a linked
// list

import avi.*;

class Queue
{

class Node
{

protected Object datum;
protected Node link;

public Node(){}

public Node(Object item, Node pointer)
{

datum = item;
link = pointer;

}

}

private Node head;
private Node tail;
private Node temporary;
private int nodeCount = 0;

// constructor
public Queue()

800 Appendix C

{
head = null;
tail = null;
temporary = null;

}

// method to insert an object into the tail of FIFO queue
public void join(Object datum)
{

if (head==null) // queue empty
{

head=new Node(datum,head);
tail=head;

}
else
{

temporary = new Node(datum,temporary);
tail.link = temporary;
tail = temporary;
temporary = null;

}
nodeCount++;

}

// method to delete an object from the head of a FIFO queue
public Object leave()
{

temporary = head;

// test for empty queue
if (head == null) return null;

// point head at next node in queue
head = temporary.link;

// test for end of queue
if (head == null) tail = null;

nodeCount--;
return temporary.datum;

}

// method to display the contents of a queue from the head to the tail
public void displayQueue(Window screen)

Answers to Exercises 801

{
temporary = head;

if (head == null)
{

screen.write("queue is empty\n");
return;

}

while (temporary != null)
{

screen.write(temporary.datum+"\n");
temporary = temporary.link;

}
}

// method to return true if the queue is empty otherwise return false
public boolean isEmpty()
{

return (nodeCount == 0);
}

// method to return the size of the queue
public int size()
{

return nodeCount;
}

}

class Ans_10
{

static public void main(String[] args)
{

String[] choice =
{"Join the queue","Leave the queue","Display the queue",
"Exit from program"};

String nameOfButton;
int positionOfButton;

Window screen = new Window("Answer_10.java");
screen.showWindow();

RadioButtons menu = new RadioButtons(screen,"",choice);
DialogBox input = new DialogBox(screen,"");

802 Appendix C

Queue fifo = new Queue();
String datum;

menu.showRadioButtons();
positionOfButton = menu.getPositionOfButton();

while (! choice[positionOfButton].equals("Exit from program"))
{

switch (positionOfButton)
{

case 0 : {
input.showDialogBox();
datum = input.getString();
fifo.join(datum);

break;
}

case 1 : {
// if queue is empty deletion is not possible
if (fifo.isEmpty())
{

screen.write("queue is empty\n");
break;

}
else
{

datum = (String)fifo.leave();
screen.write(datum+" left the queue\n");

}

break;
}

case 2 : {
fifo.displayQueue(screen);
screen.write("size of queue "+fifo.size()+"\n");

}
}

menu.showRadioButtons();
positionOfButton = menu.getPositionOfButton();

}
}

}

Answers to Exercises 803

This page intentionally left blank

Index
A
Abstract class(es), 289, 312, 364

UML representation of, 313
Abstract data types, 87, 88-90, 713
Abstraction, 88
Abstract method, 312, 313, 364
Abstract Windowing Toolkit, 443, 497, 498

components from, 457
FileDialog class from, 419

ActionEvent class, 454, 487, 498
ActionEvent object, 453
ActionListener class, 454, 473
ActionListener interface, 453, 454, 461, 487, 488, 605
ActionListener method, 474, 498
Action listeners, 605

adding for text field objects, 461, 487
actionPerformed method, 454, 574
Addition (+), 35, 45
Additive operators, 35, 40
addWindowListener method, 450, 478
ADTs. See Abstract data types
Aggregation, 586-598, 614
Algebraic expressions

stack for conversion of, 728-737
Algorithm development, 111-112

for body-mass index case study, 186-188
for date validation case study, 197-200
for die rolling simulation, 136-142
and log cutting case study, 118-119

805

Algorithms
efficiency of, 708
time efficiency analysis for, 690

American Standard Code for Information
Interchange. See ASCII character code

Analysis phase
in software development, 106, 145

AND (&&) logical operator, 173, 209
Animated GIF images, 130
Animation, 668-673, 678
API. See Application Programming Interface
append() method, 483, 731
Applet class, 677

dependency of, 623
hierarchy, 624

Applet programs, 619
Applets, 2, 62, 622-628, 677

creating, 624-625, 677
defined, 622
to display color swatch, 632
input to, 628-634
multimedia, 619
restrictions on, 673-674, 678

Applet viewer, 626, 678
drop-down menu from, 627

Application programming, 62
Application Programming Interface, 52
Archival mode

original file saved in, 15, 16
Area copying and filling, 524
args array, 77
args parameter

illustration of main method, 76
Arithmetic Exception class, 383
Arithmetic mean of numbers in array program,

250-251
screen shot from, 252

Arithmetic operations, 35-39
Arithmetic statements program, 38
Array of integers

declaration of, 243
Arrays, 241-242

advantages of linked lists over, 738
binary search for name in, 706
conceptual representation of numbers in, 243
defined, 77
initializing, 124
of integers, 132

methods for declaring/initializing, 242-244
passing by reference, 688
productions from, 752
sounds, 128
using, 245-261. See also One-dimensional arrays;

Two-dimensional arrays
Arrays class, 691, 692

binary search algorithm in, 705
Array size/declaration program, 246-247

screen shot from, 247
Array size program, 249

screen shot from, 250
ASCII character code, 24
ASCII characters

respective hexadecimal/octal codes for, 743
Assignment statement, 29
Association, 570-582, 584, 586, 614

UML class diagram showing, 572. See also
Composition

Audio class, 674, 675, 676
AudioClip class, 637
Audio clips, 675

playing, 635
Audio files

using Audio class, 127
Audio-Visual Interface (AVI) package, 1, 17, 443,

674, 676
copying and installing, 7-9. See also avi package

AU files, 674
au format audio files, 127
AU sound files, 634
autoexec.bat file, 8, 9, 12
autoFlush argument, 402
AVI. See Audio-visual interface package
avi classes

CheckBox, 217, 261-264
Memo, 194-195
RadioButtons, 156-160
Slider, 154-156

avi directory, 7
contents of, 8

avi package, 51, 63-64, 87, 88, 111, 124-135, 153,
397

Audio class in, 87, 124, 125-127
Checkbox object from, 262
classes within, 676
FilmStrip class in, 87, 124, 130-135
RadioButtons object from, 157

806 Index

Slider object from, 154
Timer class in, 87, 124, 127-130, 224

Awt. See Abstract windowing toolkit
awt package

Panel class from, 614

B
Backslash, 407
Base class, 291

and derived classes, 290
Beaufort Wind Speed Scale, 214
Ben’s Breakfast Bar

case study, 267-281
screen shot from program, 279

Binary additive operators, 35
Binary digit (bit), 22
Binary multiplicative operators, 35
Binary number system, 23, 24
Binary search, 708

for name in array, 706
Binary search algorithm, 705, 738
BinarySearch class, 686
Bird songs program, 159-160
Bits, 22, 23
Blocks

productions from, 753-756
statements treated as, 168

Block scope, 106, 145
Boats case study, 317-339

relationships between classes, 328
Body mass index case study, 185-194
BOLD+ITALIC style, 66
BOLD style, 66
Book example problem, 412-417
Boolean array, 263, 264
Boolean class, 185
boolean data type, 153, 177-178
Braces, 168, 170, 172
Bracket notation, 75
Branching, unconditional, 394
break statement, 180, 236, 282, 394
BufferedReader

input with, 398-400
Bugs

and BufferedReader constructor, 398
Button class, 451, 497
Button object, 452

Buttons, 444
adding to containers, 451-456, 497

Byte class, 185
Byte data, 398
Bytes, 23

C
C, 2
Calculator class, 570, 571, 574

source listing of, 580-581
Calendar class, 649
CANCEL button

on FileDialog box, 421
Case labels, 183, 209
Case-sensitivity, 27, 81
Case statements, 180
Case studies

arithmetic of rational numbers, 353-361
Ben’s Breakfast Bar, 267-281
boats, 317-339
body mass index, 185-194
chemical elements, 508-520
cutting logs, 116-124
date validation (including leap years), 196-209
die rolling simulation, 135-143
multithreading example, 657-667
palindrome, 253-261
stack for converting algebraic expressions,

728-737
text file statistics, 422-432

Casting, 42-45
Cast operation syntax, 42
catch block, 381, 382, 397, 409, 433

and exception handling, 391
finding, 393
and stacks, 728
syntax for, 380
for trapping exceptions, 384

catch clause, 375
CDs

copying/editing programs from, 15-16
Character class, 185
Character data, 398
Character literal, 25
Character(s), 20, 24-25
charAt() method, 731
char data type, 25, 27
CheckBox class, 217, 261-264

Index 807

Check boxes, 443, 444
adding to containers, 465-468, 497
adding to window container, 465

CheckBoxes component
example of, 491
listing of, 493-496
reusable, 491-496

CheckBoxes constructor, 263
CheckBoxes object

in Ben’s Breakfast Bar case study, 268-269
CheckboxGroup class, 468, 469
CheckBox objects

from avi package, 262
creating, 262-263

ChemicalElement class, 508
Chemical elements case study, 508-520
Chip, 22, 25
Circle class, 315, 316, 544
Circles

drawing, 524, 534, 628
Class declaration

productions from, 749-750
Class(es), 51, 82

hiding implementation details of, 88
identifying, 109
identifying in log cutting case study, 117
instance methods of, 83
items defined by, 104
naming, 63
nesting, 364
in packages, 613
productions from, 749
relationship between interface and, 342
relationships between, in Student Management

Class, 609
UML class diagram showing associations

between, 572
UML representation of, 109, 110
UML representation of dependencies between,

111
“whole-part” relationships between, 563
wrapper, 184-185. See also Data types

Classes, Responsibilities, and Collaborators cards. See
CRC cards

Class methods, 87, 101-104, 144
CLASSPATH directive, 613
CLASSPATH entry, 12

interpretation of, 8-9, 565-566
Class scope, 106, 145
Class variables, 118

clearImages() method, 132
clearTextArea() method, 68
Cloneable interface, 350
clone method, 350
Cloning, 361
CloseDialogWindow class, 565
close method, 521, 522
CloseMyWindow class, 449
closeWindowAndExit() method, 68
CloseWritingPad, 485
Coding, 107
Collaborators

and CRC card technique, 582, 584
Color

for applets, 631
foreground/background, 446
images, 131
parameter, 66
for shapes, 535, 536

Color class, 446, 632
Color constant, 629
Color object, 632
Command line arguments, 75-78, 83
Command message, 59
Comments, 62
Comparable interface, 695
compareTo method, 163, 695, 696
Compilation and execution, 112
Compiler, 10, 12
Compiling

Java program, 10-12
tools for, 14

Component class, 444, 452, 477
Composition, 598, 614

relationship between function pad and its but-
tons, 598

CompuServe, 131, 637
Computer memory, 22
Computer programs, 20, 88
Concatenation, 302
Conditional expressions, 153, 163, 172-175, 209

for controlling number of repetitions, 282
and indentation, 168

Conditional statements program, 173-174
Condition X, 178
Condition Y, 178
Constant declaration, 246

syntax for, 32
Constants, 32-33, 37, 145

initializing, 46

808 Index

Constructor calls, 297
Constructor declarations

productions from, 751-752
Constructors, 55, 56-58, 82, 87, 89, 90-93, 125, 144,

345-347
Container class, 444

add method from, 498
createImage method from, 676
creating, 443, 498

Containers
awt components added to, 444
buttons added to, 451-456
check boxes added to, 465-468, 497
components added to, 499
creating, 444-448
fonts added to, 458-460
labels added to, 457-458
lists added to, 472-476, 497
menu bars added to, 605
radio buttons added to, 468-472, 497
reusable, 476-480
text fields added to, 461-464

continue statement, 394
Control variable identifiers, 245, 248
Coordinates, mouse, 528-530, 531
Copying

objects, 350-351
programs from CD, 15-16

Copyright-free
images, 135
sound clips, 126, 130

Correlation coefficient, 402
Counters

while loop controlled by, 220
Counting demonstration program, 237-238
CRC cards, 563, 582-586, 614

for Degree class, 583
index card layout for representing, 583
for Module class, 584
for ModuleResults class, 585
for StudentProgram class, 585

CRC card technique, 582
createData() method, 594, 595
createImage method, 676
Currency formatting, 265

D
Data, 20-21, 45

encapsulation of, 88
input and output, 398

names, 45
Data controlled loop, 220-223, 229
Data controlled while loop program, 222

screen shot from, 224
Data declarations, 31
DataInputBox, 515
DataInputBox component, 509

listing of, 510-514
DataOutputBox component, 514
Data storage, 21-27

number systems, 23-27
Data streams, 375
Data types, 23, 51, 52, 53, 82, 88-90, 144, 563. See

also Classes
Data validation case study, 196-209
DecimalFormat class, 315, 316
Decimal integer literals, 25
Decimal number system, 23, 24
Decision symbol, 227
Declarations, 95

arrays, 241, 253
one-dimensional arrays, 242, 243, 244
objects, 54

DecorateRoom class, 124
creating, 98

Decreasing function, 354
Decrement postfix operators, 217, 233, 282
Decrement prefix operators, 233
Default statement, 180
Default superclass constructor, 363
Degree class, 599

CRC card for, 583
delay class method, 127
Dependencies, 586

between classes, 145
between packages, 569, 613
UML representation of, between classes,

111
UML representation of DateString class,

201
Dependency diagram

in Boats case study, 336
Deprecation, 401, 497, 656
Derived classes, 290
Design and programming parts

of software development life cycle, 108
Design phase

in software development, 107, 145
Desk checking, 112, 145

of cut() instance method, 120

Index 809

Destination, of assignment, 36
Dialog box, 68, 444, 481

example of, 69
input of number into, 72
input to, 69-72
visibility of, 70

DialogBox class, 64, 69, 73, 397
DialogBox component

reusable, 486-491
DialogBox object creation, 70
Dialog class, 444, 480, 481
Dialog font, 486
Dialog window

drawing, 481
label for, 486
width and height of, 486, 487

Die rolling simulation case study, 135-143
Die rolling simulation program extension, 230-231

screen shot from, 232
Digital, 21
Dimension class, 478
Directories

class storage in, 97
Display class, 570, 573-574
displayDetails method, 307
displayList method, 722
displayResults() method, 594, 595
displayStatistics class method, 103, 104
dispose method, 450
Divide-by-zero exception, 380
Divide operation, 348, 352
Division (/), 35, 45
Documentation, 113-116
Double backslash, 407
Double-branch selection, 164
Double buffering, 676
Double class, 185
double data type, 27
Double equals sign (==), 170
double number type, 399, 400
Double-precision form, 32
Double-precision literal, 27
double type, 26
Doubling time, 390
do..while loop, 227-231, 240, 282
do..while statement, 217
drawImage method, 676
Drawing

circles, 628

and mouse events, 527-533
polygons, 628
rectangles, 532-533, 628
and storage/retrieval, 502
shapes from Graphics class, 524
two-dimensional shapes, 502

DrawingPad class, 548-557
drawInWindow method

algorithm for, 659
drawShape method, 547
drawShape variable, 534
drawString method, 528
driver class, 97, 101
Drop-down menus, 605, 606, 614

from applet viewer, 627
example of, 606

Dynamic array, 250
Dynamic data structure, 710
Dynamic memory allocation, 738
Dynamic method lookup, 305, 363

E
Editing programs from CD, 15-16
Editor program, 9
ElasticRectangle class, 532, 533
Ellipse class, 544
Ellipses

drawing, 524, 534, 558
else clause, 171, 172
else if statements, 176
else keyword, 176, 209
else statements, 175
E-mail, 620, 621, 677
Embedded selection statements, 153
Encapsulation, 88, 144

of data, 52
data and methods, 89
and inner classes, 312

EndOfFileException, 396
Environmental Protection Agency Web site, 86, 214
eo1IsSignificant() method, 406
equalsIgnoreCase method, 163
equals method, 163, 349
Equals sign (=)

for assignment, 170
Error class, 378
Error message

for data in incorrect format, 72
Errors, 51, 78-82, 376

810 Index

detection of, 153
logical, 82, 83, 112
run-time, 82, 83
syntax, 78-81, 83, 112. See also Exceptions

Error subclass, 433
Escape-sequence characters, 66, 746
Euclid’s algorithm, 353

for greatestCommonDivisor method, 354
for makeRational() method, 355

Event class, 498
Event handling, 444

and applets, 627
in java.awt package, 448-451

Event listener, 448, 498
Events

and program malfunctions, 375
Example_2.java, 15-16

screen shot from running program, 16
Exception classes, 377-379

creating own, 387-390
Exception handlers, 376, 409
Exception handling, 375, 412

purpose of, 376
and throwing exception, 391
using, 396-397

Exception-handling classes
partial class hierarchy for, 378

Exception object, 391
Exception(s)

catching, 377, 379-383, 433
catching multiple, 383-386, 433
creating own, 376
defined, 376, 433
and flow of control, 381
search for handler by, 392
throwing, 390-394, 433

Exception subclass, 433
Exception superclass, 434
Expressions

evaluating, 40
productions from, 756-759

extends keyword, 363

F
failure() method, 395
Fault handling techniques, 376
Fault-tolerant computer system, 376
Field declarations

productions from, 750

FIFO list, 726
FileDialog class, 419-422
FileInputStream, 405
filename parameter, 65, 66
filenames, 131
FileNotFoundException, 424
FileOutputStream, 410
FileReader class, 405, 407
FileReader object creation, 405
Files

creation of, 407
inputting name of, 419
objects saved to, 521

File Transfer Protocol, 620, 677
FileWriter class, 410
FileWriter object creation, 410
FilmStrip class, 568, 674, 675, 676
FilmStrip object, 130
finalize() method, 362
Finalizers, 362
finally block, 394-396, 409, 434
finally clause, 375
First In First Out list. See FIFO list
Flicker

reducing, 668-670, 676
Float class, 185
float number type, 399, 400
float type, 26, 42, 67
Floppy disks, 407
FlowLayout class, 452
flush method, 402, 521
Font class, 480, 486
Fonts

adding to containers, 458-460
size of, 78

fontSize parameter, 66
for loop, 235-239, 240-241, 245, 282

and index control, 248
and two-dimensional arrays, 642, 644
and while loop, 236, 239

formal-parameter-list, 55, 94
Formal parameters, 144
for statement, 217

to control index to array, 248
loop control variable in, 282
syntax for, 235

Forward slash, 407
Four-bit full adder, 617
Frame class, 444

Index 811

FTP. See File Transfer Protocol
FunctionPad class, 570, 573
FunctionPad object, 598
FunctionPad source code, 577-579

G
Garbage, 361, 362

collection of, 106, 145, 361-362, 364, 365, 652
Generalization, 290
getActionCommand() method, 454
getAudioClip method, 634, 635
getDate() method, 128
getDirectory() method, 420
getDouble() method, 397
getFile() method, 420
getFloat() method, 397
getGraphics method, 528, 548, 558
getHeight() method, 68, 478
getHour() method, 127
getImage method, 638
getInteger method, 397
getItem method, 466, 473, 492
getLongInteger() method, 397
getMinute() method, 127
getNameOfButton method, 158
getParameter method, 629
GetPrintJob

from Toolkit class, 548
getScreenSize method, 478
getSecond() method, 127
getSource() method, 487, 488
getStateChange method, 466, 492
getText method, 461
getTime() method, 128
getToolkit method, 477
getValue() method, 155
getWidth() method, 68, 478
GIF files, 637, 668, 674
GIF images, 130, 669, 674
Gopher, 620, 677
Gosling, James, 2
Graceful degradation, 376
Grammatical errors, 10-11, 78. See also Syntax
Graphical double-buffering, 670, 671
Graphical objects, 65

creating/saving, 544
Graphical user interfaces, 51, 443, 497, 564, 678

in chemical elements case study, 508-510
proportioning components of, 477

for student management systems, 604
Graphic Interchange Format files. See GIF files
Graphics

printing, 502
Graphics class, 501, 524-527, 558

drawImage method from, 676
drawing two-dimensional shapes in, 534
image drawing methods defined by, 638
methods in, 626

Graphics-output clipping, 524
GraphicThread class, 665, 667

constructor and method of, 660
UML dependencies, 662
UML representation of, 661

GridLayout manager, 458-459
GUI components

creating, 498
reusable, 444
as standalone classes, 498

GUI development
Java Swing for, 497

gui package, 594
UML representation of, 568

GUIs. See Graphical user interfaces
gui subdirectory, 566

contents of, 565

H
Half-adder, 616
Half-life, 398
Hard-coding data, 73
Hard disks, 407
has-a relationship, 313, 586
Heap, 91, 145, 361, 362
heightOfFrame, 131
height parameter, 446
HELLO WORLD, 68-69

applet for displaying in window, 625-626
executing, 12
screen shot from running program, 13
string display, 67

helper method, 101, 103, 111
and pseudocode, 112

Hexadecimal number system, 24
Hierarchy

object assignment over, 298
Hierarchy class diagrams, 294, 295
Hierarchy diagram

superclass/subclass relationship, 291

812 Index

Home-grown techniques, 396
HotJava (Sun), 2, 621
Hot link, 620
HTML. See Hyper-Text Mark-up Language
HTTP. See Hyper-Text Transfer Protocol
Hypermedia, 620
Hypertext document, 620
Hyper-Text Mark-up Language, 620, 673, 677
Hyper-Text Transfer Protocol, 621, 677

I
Identifiers, 27-28, 45

numbers stored by, 36
to represent data, 28
scope and lifetime of, 87, 104-106

if..else statement, 153, 161-166
program, 164-165
syntax of, 165

If Java statement program, 162
if keyword, 176, 209
If statements

nesting of, 171, 209
syntax for, 163

Illegal identifiers, 31
Image maps, 645-648, 678

screen shot, 648
Image painting, 524
Images

animation of, 678
with applications, 675-676
displaying, 637-639, 675-676
files of, 15
loading, 639-641
three, on screen, 134

Import list, 62-63
import statement, 62, 83
Increasing function, 354
Increment postfix operators, 217, 233, 282
Increment prefix operators, 233
Indentation

with else if statements, 176
with if statements, 168, 171
and while loop, 221

Index, 253
index loop control variable, 246
indexOf method, 505
Index-out-of-bounds exception, 377
Index page

iconizing, 14

Infinite loop, 236, 237, 282
Infix notation, 728, 729
Inheritance, 289, 290-299, 363

classes versus interfaces, 340
between Employee and Technician classes, 296
example of, 292-299
Java syntax for, 291
multiple, 341
when to use, 344

Initialization
of alphabet, 56
of arrays, 124
of instance variables of class, 144
of loop control variables, 219
of one-dimensional arrays, 242, 243, 244
of variables, 32

Inner classes, 312
Input and output, 64
InputStream, 398
InputStreamReader, 398, 405

format of constructor from, 399
Instance methods, 55, 58-61, 82, 83, 87, 89, 93-101,

103, 144, 347-348
in Audio class, 125
differentiation of, from class method, 101

Instance of class, 56
instanceof operator, 307-309
Instances, of class, 52
Instance variables, 90, 586
Instantiation, 52, 90, 91, 144
Instructions, 31
int data type, 27
Integer class, 184, 185
Integer data types, 25, 45
Integer numbers, 25
Integer object, 184
Integers, 20, 45

array of, 132
program for inputting/performing operations on,

73-74
Integer type

object creation for, 399-400
Integer wrapper class

use of, 185
Integrated circuits, 22, 25
Interfaces, 289, 339-345, 364

alternative UML representations of, 339
classes in AWT package for building, 445
productions from, 752

Index 813

Interfaces (continued)
relationship between classes and, 342
when to use, 345

Internet, 2, 677
defined, 620
using, 3

Internet browser, 3
Internet provider accounts, 3
Interpreter, 12
int number type, 399, 400
int primitive, 57
int type, 42
intValue() method, 184
int values, 25
IOException, 424

and readLine method, 399
is-a hierarchies, 313
isEmpty method, 723
isPopupTrigger method, 537
ITALIC typeface style, 29, 66
ItemListener method, 466, 470, 473-474
itemStateChanged method, 466, 473, 492

J
Java, 1, 52

applets, 2
as case-sensitive language, 81
description of, 2-3
diversity of applications for, 677
finalizer methods in, 362
input/output, 398
string literal in, 54. See also Syntax of Java

Java API, 52, 53
documentation generator (javadoc), 113
reusing methods defined by, 145

java.applet package, 623
Java application program

format for simple, 33-35
Java Archive (JAR) file, 648

digital signature attached to, 674
java.awt.event package, 454, 498

event classes in, 487, 488
event-listener interfaces in, 449

java.awt package, 443
buttons added to containers, 451-457
check boxes, radio buttons, and lists added to

containers, 465-476
container creation, 444-448
event handling, 448-451

Graphics class within, 524
Java Swing, 497
labels, fonts, and text fields added to containers,

457-464
reusable CheckBoxes component creation,

491-496
reusable container creation, 476-480
reusable DialogBox component creation,

486-491
reusable WritingPad component creation,

480-485
Java byte codes, 10, 12
javac command, 11, 95, 97, 565
Java code, 111

documenting, 14
java command, 12
Java components, 19-49

arithmetic, 35-39
casting, 42-45
data, 20-21
data storage, 21-27
format of simple program, 33-35
identifiers, 27-28
operator precedence, 40-41
syntax, 29-31
variables and constants, 31-33

javac tool, 14
Java Dialog font, 66
javadoc, 14, 113

sample online documentation generated by, 116
Java interface construct, 693, 695
Java interpreter, 384

and exception handling, 379, 380, 382, 391
Java Interpreter (java), 14
java.io.BufferedReader

hierarchy diagram for, 399
java.io.InputStreamReader

hierarchy diagram for, 399
java.io package, 398

and Serializable interface, 521
java.io.PrintStream

hierarchy diagram for, 400
java.io.PrintWriter

hierarchy diagram for, 400
java.lang, 6
java.lang package, 53, 63

Comparable interface defined in, 695
java.lang.Runnable, 654
java.lang.Thread class, 653

814 Index

Java Language Compiler (javac), 14
Java library

NumberFormat class, 217
Java primitive data types, 744
Java program

compiling, 10-12
executing (running), 12-14
general structure of, 61-63
inputting/saving, 9-10

Java software development environment
creating, 5-6

java.string, 6
.java suffix

saving program as text file with, 10
Java.sun.com Web site, 17
Java Swing, 407
java tool, 14
Java 2 Software Development Kit, 1
Java 2 Software Development Kit documentation

downloading, 4, 6
introductory page, 7
opening page of, 6

java.util, 6
java.util.Arrays, 693
java.util.Arrays—Binary search class, 705-708
java.util.Arrays—Sort class, 691-699
Java Virtual Machine, 10, 652

and exceptions, 376
JButton class, 497
Joint Photographic Experts Group files (JPEG files),

637, 674
JPEG images, 130
jpg image files, 131

K
Keyboard input, 375
Keyboard object

instantiating of, by object stream, 399
Keywords, 27-28, 28

L
Labels, 444

added to containers, 457-458
for Dialog window, 486
parameters, 465, 469
in window container, 461
written to window container, 458

LALR(1) grammar
productions from, 749

Last In First Out list. See LIFO list
Layout manager, 452

five implementations of, 453
LayoutManager interface, 452
Length, of array, 241
length variable, 282
Lexical structures

productions from, 747
Lifetime of identifier, 106
LIFO list, 726
Linear models, 403
Line class, 544
Line drawing, 524, 534, 558
Linked list, 685, 686, 708-726

building, 711, 712-713
class variables associated with, 715
node appended into, 714, 716
node deleted between first/last in, 719
node deleted from front of, 718
node deleted from tail of, 720
stack created from, 726
use of, 710

LinkedList class, 714, 718-725, 726
Linux platform, 5

downloading Java 2 SDK on, 4
Linux users

inputting/saving Java program, 9
List component constructors, 472
Listeners, 449
Lists, 444, 710

adding to containers, 472-476, 497
adding to window containers, 473

Literal, 25
LOAD constant, 420
Log class

listing of, 120
program demonstrating use of, 122-123

Log cutting case study, 116-124
Log files

arithmetic exception, 380
arithmetic of rational numbers, 361
array size/declaration program, 248
from Ben’s Breakfast Bar program, 280-281
bird songs program, 160
for body-mass index case study, 193
conditional statements program, 174
counting demonstration program, 239
data controlled while loop program, 223
date validation case study, 208-209

Index 815

Log files (continued)
die rolling simulation, 143
for Employee and Technician classes, 297
example of, 75
exception catching, 383
exception class creation, 390
finally clause, 396
finding catch block, 394
if...else statement, 165
if statement, 162
image files, 134
input obtained from file, 409
linked lists, 713
Mergesort demonstration, 694
multiple exceptions catching, 386
object assignment over hierarchy, 299
one-dimensional array and initialization pro-

gram, 245
overriding is not overshadowing program, 311
overriding superclass methods program, 301
polymorphism program, 306
read file/write report, 410-411
ReversePolish class, 737
selections sort, 690
switch statement program, 182
temperature conversion program, 156
what to wear program, 168
while loop for alarm clock program, 226-227

LOG_FILE.TXT, 74
Logical AND (&&)

and else if statements, 176
truth table for, 175, 178

Logical errors, 51, 82, 83, 112
Logical operators, 153

AND (&&), 173, 178, 209
OR, 177, 178, 209

Logical OR
truth table for, 177, 178

Logistic growth models, 399-401
Long class, 185
long data type, 27
Long evaluation, 209
Long integer literal, 25
long number type, 399, 400
long type, 25
Loop control variable, 218, 218-219, 282
Loop structure, 218-220

best choice for, 239-241

Loop variable
controlled by data, 219

Lukasiewicz, Jan, 728

M
main method, 63, 75, 77, 78, 83, 91, 96, 103, 112,

241, 242
within driver class, 97
helper method called from, 101
and inputting name of file, 419
pseudocode of, in book example problem, 414

Maintenance phase
in software development, 107, 145

makeRational() algorithm, 353
makeRational() class method, 346, 348
MalformedURLException, 675
Manager class

coding of, 303-305
as subclass of Employee class, 304

Managers, 599
Mantissa, 26
Maximum constants, 184
Maximum numbers

in array, 252
MediaTracker, 639
MediaTracker class, 639, 675, 678

instantiating object of, 640-641
methods in, 640

Member class, 312, 714
Memo class, 194-195, 676
Memo object

creating, 195
example of, 194

Memory, 22, 45
addresses, 349
real number stored in, 26

MenuBar class, 605
MenuBar object, 605
Menu bars, 605, 614
MenuItem objects, 536
Menus, 443, 604-608

drop-down, 605, 606, 614
Mergesort

modified version of, 691, 692
Message passing, 60
Messages, 59
Method call, 87, 145

816 Index

Method declarations
productions from, 751

Method definition
syntax, 94

Method finalizer, 362
method-name, 55
Method overloading, 289, 345
Methods, 52

calling and declaring, 144
classifying, 103
within DialogBox class, 69
identifying, 109
identifying in log cutting case study, 117
and parameters, 54-55
value returned from, 87
in Window class, 65

Method signature, 54
Microsoft Internet Explorer, 3, 621
Microsoft 95/98, 5
Minimum constants, 184
Minimum numbers

in array, 252
Modal windows, 480, 481
Modem, 3
Modifiers, 54, 144
Module class, 583, 584, 599

CRC card for, 584
ModuleManager class, 608

source listing of, 599-604
ModuleResults class, 586, 599

CRC card representing, 585
Modules menu, 605
Monitors

and dimensions of components, 498
screen size, component measurements and, 477
and size of window pane, 478

Mouse
and location/size of graphical shape, 502

MouseAdapter class, 527
mouseDragged method, 530
MouseEvent class, 527, 528, 537, 558
MouseEvents, 530
Mouse events, 527-533

listener interfaces for, 558
MouseListener, 558
MouseListener interface, 527
MouseMotionAdapter class, 530
MouseMotionListener, 558

MouseMotionListener interface, 530
mouseMoved method, 530
Mouse position

and image maps, 678
mousePressed method, 527
mouseReleased method, 534, 546
MSDOS window

errors listed in, 11-12
execute command java to run program from, 13

Multimedia applets, 619
Multimedia interfaces, 51
Multi-media tracker, 671
Multiple exceptions, 376

catching, 383-386
Multiple inheritance, 341
Multiple selection, 181
Multiplication (*), 35, 45
Multiplicative operators, 35, 40
Multiplicity of an association, 571, 614
Multitasking, 651
Multithreading, 651-652

case study, 657-667
Music, 126, 127
MyWindow class

foreground/background colors set for, 446
modifying, 451

MyWindow container, 446
MyWindowWithButton class, 454

modifying, 454-456
MyWindowWithCheckBoxes class, 466

modifying, 468
MyWindowWithLabels class

modifying, 460
MyWindowWithList class

modifying, 476
MyWindowWithNewTextFields class, 464
MyWindowWithRadioButtons class

modifying, 472
MyWindowWithTextFields class, 462

modifying, 464

N
Named reference variable head, 709, 738
Name input

dialog box used for, 16
Names

for class, 63
constructor, 91

Index 817

Names (continued)
of identifiers, 144
productions from, 748
resolving clash of, 568
for shapes, 536

National Oceanic and Atmospheric Administration,
214

National Weather Service, 86
Nested classes, 364
Nested if..else statements program, 167-168
Nested if statements, 166-172, 209
Nested selections, 166
Nested selection statements, 153
Netscape Navigator, 3, 621
new keyword, 282
New operator

array instantiated with, 253
newString variable, 59
nextToken() method, 406
NOAA. See National Oceanic and Atmospheric

Administration
Node class, 708, 711-712, 713

relationship between linked list class and, 714
NodeCount variable, 715
Nodes, 709, 710, 738

appending into linked lists, 714, 716
code for deleting from linked list, 717
data stored at, 711
deleting between first and last nodes in linked

list, 719
deleting from front of, 718
deleting from tail of linked list, 720
removal of, from any position in linked list, 715

Non-terminal symbols, 29
NotePad, 8, 9
NOT operator (!), 177
Noun identification, 110
NT Windows, 5
NullPointerException, 395
Null reference, 709, 710
NumberFormat class, 217, 264, 265, 283

in Ben’s Breakfast Bar case study, 267-279
NumberFormatException, 383
Numbers

formatting for output, 264-266
strings converted to, 72-75

Number systems, 23-27
characters, 24-25
integer numbers, 25
real numbers, 26-27

Numeric calculator, 570, 571
NumericKeyPad class, 571, 573, 574
NumericKeyPad source code, 575-577

O
Oak, 2
Object

creating, 56
stored by reference, 57

Object assignment, 297
over hierarchy, 298

Object class, 292, 349
Object finalization, 362, 365
ObjectInput class, 558
ObjectInputStream, 522
Object-oriented language, 52
Object-oriented program design, 108-124, 145

algorithm development, 111-112
classes/methods identified, 109-111
compilation and execution, 112
documentation, 113-116
testing, 112

Object-oriented programming, 1, 2, 4, 87-151, 289
abstract data type, 88-90
avi package revisited, 124-143
class methods, 101-104
constructors, 90-93
instance methods, 93-101
learning, with Java, 15
object-oriented program design, 108-124
and reusable classes, 476
scope and lifetime of identifiers, 104-106
software development, 106-108

ObjectOutput class, 558
ObjectOutputStream, 521
Object properties, 289, 348-352

comparing objects, 348-350
copying objects, 350-351
passing objects as parameters, 352

Objects, 51-86
association and connecting of, 571
AVI package, 63-64
command line arguments, 75-78
converting strings to numbers, 72-75
copying, 350-351
declaring, 53-61, 54
and errors, 78-82
identification of, 109
input to a dialog box, 69-72
instantiating, 52

818 Index

introduction to, 52-53
passing as parameters, 289, 352
printing, 548-557
saving and loading serializable, 520-523
serialization of, 502
simple program revisited, 61-63
storage of, 348, 687
string class, 53-61
Window class, 65-69

Object streams
versus text streams, 520

“Off by one” errors, 241
One-dimensional array declaration

syntax of, 243
One-dimensional arrays, 75, 217, 241, 252-253, 282,

558, 641
for Ben’s Breakfast Bar, 274
declaring and initializing, 242-245
and initialization program, 244
Telephone objects within, 697

Online documentation
illustration of, 116

Operator overloading, 347, 364
Operator precedence, 40-41, 45
Operator priorities, 40, 745
Ordinal type, 179, 183, 209
Ordinal value, 179
ordinaryChars() method, 406
OR logical operator, 209
OR operator, 177
Output

formatting numbers for, 264-266
Window class for, 65

Output format options program, 265-266
OutputStreamWriter class, 410
Overloaded constructors, 364
Overloading methods, 345
Overridden methods, 299
Overriding is not overshadowing program, 310-311
Overriding superclass methods

program demonstrating, 301
Oxford University Sound Archive, 634
Ozone levels

and UV index, 214

P
package keyword, 613
Packages, 52, 53, 82, 293, 564-570, 613

benefits of, 569-570
productions from, 748-749

UML diagram of dependencies between, 569
package statement, 564
Painting screen, 502, 544-548
paint method, 524, 544, 546, 548, 558, 628, 649

overriding, 668, 670
Palindrome case study, 253-261

screen shot for, 261
Panel class, 573, 614, 623, 625
Parameters

and methods, 54-55
objects passed as, 289, 352

Parentheses
and order of precedence, 40

parent type, 70
parent-Window type, 130
Partial images, 639
Pascal, 2
Password, 3
PCM coded data, 127
Peeking, at item in stack, 726
Per-group inspection, 112
Photographs

moving over Web, 637
Pick lists, 443
PLAIN style, 66
Plus sign (+), 25, 67

and classes for public use, 569
Pointing devices, 443
Polygons, 628

drawing, 558
Polymorphic methods, 364
Polymorphism, 289, 303-306, 363, 547

program example, 306
Popping from stack, 726, 727
PopupMenu object

creating, 536
Pop-up menus, 501, 502, 534-544

examples of, 535
Portable between two computers, 10
positionOfLargest method, 687
Positive integer literals, 25
Postfix notation, 728
Primitive data types, 27

wrapper classes for, 185, 209
and write method, 67

Primitive data values, 53
Primitive types

stored by value, 57
and wrapper classes, 184

Principal, 357

Index 819

Printing
graphics, 502
objects, 548-557

print instance method, 401, 402
PrintJob class, 558
PrintJob object, 548
Print jobs, 548
println instance method, 401
print1n statement, 402
PrintStream

and deprecation, 401
PrintWriter

output with, 400-403
private fields

of enclosing class, 364
Private method, 90, 103, 144
private priority method

algorithm for, 732
private variables, 293, 363
Problem analysis, 109
processMouseEvent() method, 537
processMouseMotionEvent() method, 537
Program, computer, 20
Program failure

and events, 375
Program implementation

phases of, 13, 14
Programmer-defined classes

names for classes in, 568
Programmer-defined packages, 564
Programming phase

of software project development, 107, 108,
145

Programming stages, 145
Programs

animation techniques, 671-673
arithmetic exception creation, 379
arithmetic statements, 38
arrays, 246-247, 249, 250-252
binary search, 707
class creation, 113
class scope for window object, 105
command line parameters, 77
conditional statements, 173
counting, 237
die rolling simulation, 230
digital clock, 654-656
exception catching within program, 382
exception class creation, 389

finally clause, 395
finding catch block, 393
if..else statement, 164
if statement, 162
image display, 133
image maps, 645-647
inheritance, 296
input obtained from file, 408-409
instanceof operator, 308
integer operands and arithmetic operations, 73,

402-403
Mergesort demonstration, 693-694
mouse coordinates plotted on screen, 528-529
multiple exception catching within program,

384-385
nested if..else statements, 167
newspaper names/prices, 79
numbers calculations, 43-44
object assignment over hierarchy, 298
output format options, 265-266
overriding is not overshadowing, 310
overriding superclass methods, 301
polymorphism, 306
Quicksort demonstration, 692
radio buttons, 159
read file/write report, 410-411
selections sort, 689-690
sequential search demonstration, 702-704
slider to input temperature, 155
storing/retrieving data from Vector, 503-505
String class and instance methods, 60
SwimmingPool class, 97, 102
switch statement, 180
Telephone class, 698-699
testing, 112
text file contents viewing, 420-421
Timer class and playing sounds, 128
two-dimensional shapes drawn from Graphics

class, 524-526
wav sound file playing, 126
while, do..while loops and

increment/decrement operators, 233
while loop controlled by input data, 222
while loop for alarm clock, 225
window container creation, 447, 450
window container creation and labels added,

459-460
window container creation and push button,

454-456

820 Index

window container creation with added labels/text
fields, 462-464

window creation and list added to container,
474-476

window creation with radio buttons added to
container, 470-472

Projected light, 631
prompt, 70
Properties class, 548
protected variable, 293, 363
Pseudocode, 111
public access method, 363
Public class, 90, 144
Public method, 90, 94, 103, 144
Pushing from stack, 726, 727

Q
Quadratic algorithms, 691, 738
Query message, 59
Queue, 726
Quicksort

algorithm, 738
tuned version of, 691, 693

R
Radio buttons, 443, 444

added to containers, 468-472, 497
adding to window container, 469
behavior of, 468

RadioButtons class, 156-160, 496
RadioButtons component, 515
Radio-buttons object

creating, 158
Railway Shunting-Yard algorithm, 728-729
Rational ADT (Abstract Data Type), 345
Rational class, 345, 346, 347, 352, 353

definition of, 353
implementation of, 355-359
methods of, 359
UML representation of, 354

Rational numbers, 345
arithmetic of (case study), 353-361
case study, 353-361
instance method for addition of, 347

Reader class, 398
readLine method, 399
readObject method, 522, 558
Real-number literal, 27
Real numbers, 20, 26-27

Rectangle class, 544, 546
Rectangles

constructing, 531, 532-533
drawing, 524, 534, 558, 628

RectangularWindow class, 657, 659-660, 665, 667
UML dependencies, 659
UML representation of, 658

Red, Green, and Blue (RGB), 631, 632
Red, Yellow, and Blue (RYB), 631
Reference

copy versus, 350
passing array by, 688
storage by, 687
to value, 58

Reference counter, hidden, 362
Reflected light, 631
Reflecting, 354, 366, 367
Relational operators, 170
Remainder operator (%), 35, 41, 45
repaint() method LC, 544, 558, 649, 651
Resource Information File Format, 127
Restrictions, 673-674, 678
Return statement, 145

syntax of, 95
return-type, 55

and value, 94, 95
Reusable containers

creating, 476-480
Reverse Polish algorithm

stack used in, 730
ReversePolish class, 730-731, 733

UML representation of, and dependencies, 731,
736

ReversePolish constructor
algorithm for, 731

Reverse Polish notation, 728, 729
RIFF. See Resource Information File Format
RoundShape class, 313, 314
Run() method, 653, 654, 678
Run-time errors, 51, 82, 83
RuntimeException

list of subclasses to, 433

S
Sailboat class

Java code for, 326-327
SAVE constant, 420
Scope

of identifier, 106

Index 821

Screens
output to, 375
painting, 502
Window object, 66

Screen size
and component measurements, 477

ScrollableList class, 496, 566, 568
Scrollbars, 68, 444
SDK. See Java 2 Software Development Kit
SDK Tool Documentation

index page for, 14
SDK tools, 14
Searching, 685
Searching algorithms

worst-case efficiency, 708
SearchingAlgorithms class, 701-702
Selection, 153-215

boolean data type, 177-178
conditional expressions, 172-175
else if statements, 176
if-else statements, 161-166
Memo class, 194-195
nested if statements, 166-172
Slider class, 154-160
switch statements, 179-183
this object, 195-196
wrapper classes, 184-194

Selection sort, 686, 687, 738
selectionSort method, 687, 689
Self-extracting programs, 5
Self-referential structure, 709
Semiconductor device, 22
Sentinel value, 220
sequential method, 702
Sequential search, 700-704, 708

on array of records, 700
Serializable interface, 521, 558, 587, 588-593
Serializable objects

saving and loading, 520-523
Serialization, 502, 520
setActionCommand, 536
setBackground component, 452
setBackground method, 446, 482
setEditable method, 464, 482
setForeground component, 452
setForeground method, 446, 482
setLayout method, 478
setLocation method, 446, 482
setSize method, 446, 482

setText method, 464
Shadowed variables, 309-311
Shape class, 546
Shapes

drawing on sketch pad, 537-543
hierarchy of, 545
repository of, 546

Shape superclass
implementation of, 545

Short-circuit evaluation, 178, 209
Short class, 185
showCheckBoxes() method, 263
showDialogBox() method, 70, 71
showSlider method, 155
Signature syntax, 54
Single-branch selection, 161
Single-precision literal, 27
Single-precision value, 32
Siple, Paul A., 86
SIZE constant, 246
SketchPad class, 537, 546, 548, 673

drawbacks with, 544
screen shot, 543

sleep method, 654
Slider bars, 443
Slider class, 154-156, 676
Slider object

creating, 154
Sliders, 233, 245
Software development, 106-108

life cycle, 107
stages within, 145

Sort class, 686
Sorting, 685, 686-691
Sorting algorithm, 685, 686

average-case efficiency of, 693
sortingAlgorithms class, 687, 688
sort method, 692
Sound

with applications, 674-675, 675
clips, 127
links with, 620
playing, 634-637
program for playing succession of, 128-130

Sound files, 15
AudioClip created from, 675

Sphere class, 315, 316
Squares

drawing, 524, 534

822 Index

Stack class, 686
Stack list, 727-728
Stacks, 726-728, 738

access to, 726
for converting algebraic expressions, 728-737
operator priorities, 729
in reverse Polish algorithm, 730

start() method
of Thread object, 653

Statements
productions from, 753-756

State parameter, 465, 469
Static arrays, 282
Static initializers

productions from, 751
Static method, 101, 103
Static modifier, 63
stop method

and deprecation, 656
Storage, 97

of real numbers, 171
Storage space

and new keyword, 282
Stored by reference object, 57
Stream input and output, 398-403

input with BufferedReader, 398-400
output with PrintWriter, 400-403

stream object
keyboard object instantiated by, 399

Streams, 375, 398
StreamTokenizer class, 404-407, 424, 697
Stream tokenizing, 376, 412
String, 20

alphabet, 56
array, 83
assignment, 58
concatenating, 67-68
converting to numbers, 72-75
defined, 53
displaying, 524
instantiation, 70

StringBuffer object, 731
String class, 51, 53-61, 89, 163

compareTo method from, 695, 696
constructors for, 56-58, 345
declaring objects, 54
instance method, 58-61
methods and parameters, 54-55
program demonstrating, 60

string assignment, 58
String concatenation operator, 67
String data

and command line, 75
String data type, 58, 83
String literals, 54
String methods, 59
String objects, 52
StringTokenizer class

and FileViewer class, 417
Student Management Class

screen shots, 612, 613
Student management system

building, 599-604
testing, 608-613

StudentProgram class, 599
CRC card for, 585

style parameter, 66
Subclasses, 289, 291, 363

of abstract class, 313
constructor for, 297
finalizer of, 362

Subdirectories
class storage in, 97
packages placed in, 565

Subprocesses, 651
Subscriber class, 507
Subtraction (-), 35, 45
Sun Microsystems, Inc., 1, 2, 401, 497, 626, 656

Web site, 5, 113
Superclasses, 289, 291, 363

constructor for, 297
overriding methods, 299-303

super keyword, 295, 303
super reserved word, 309, 363, 446, 477
Surfing the net, 621
SwimmingPool class, 92, 95, 113

creation of, 96-97
switch statement, 153, 179-183, 209

program to demonstrate, 180, 182
syntax for, 179

Syntax, 29-31
for applet tag, 622
of cast operation, 42
catch block, 380
constructor, 91
for declaration of one-dimensional array,

243
do..while loop, 228

Index 823

Syntax (continued)
errors, 51, 78-81, 83, 112
finally block, 394
if..else statement, 165
for inheritance, 291
instanceof operator, 307
method definition, 94
passing message to object by instance method, 59
for passing parameters to applets, 628
to produce Java documentation, 115
return statement, 95
of signature, 54
of for statement, 235
for switch statement, 179
for throw statement, 391
for variable declaration, 31
of while loop, 220

Syntax of Java, 747-759
productions from arrays, 752
productions from blocks and statements,

753-756
productions from classes, 749-750
productions from constructor declarations,

751-752
productions from expressions, 756-759
productions from field declarations, 750
productions from interfaces, 752
productions from lexical structures, 747
productions from method declarations, 751
productions from names, 748
productions from packages, 748-749
productions from static initializers, 751
productions from types, values, and variables,

747-748
productions used only in LALR(1) grammar, 749

System.out, 401

T
Tab

for Ben’s Breakfast Bar, 273, 274, 275
Technician class

modifications to, 300
Telephone class, 695-696
Telephone objects

within one-dimensional array, 697
Telnet, 620, 677
Temperature

conversion program, 155-156
wind chill, 86

Terminal symbols, 29, 30
Testing, 112

for body-mass index case study, 188
for date validation case study, 201
for log cutting case study, 120
multithreading example case study, 663-664
software project, 107
student management system, 608-612

Text
outputting, 67
writing into text field, 464

TextArea class, 480, 482
Text areas, 444
TextComponent class, 461, 464
Text document

saving program as, 10
TextField class, 461
TextField component

in dialog window, 487
Text fields, 444

added to containers, 461-464
in window container, 461

TextFileAnalyzer class, 422
UML dependency diagram for, 426
UML diagram for, 423

Text file input/output, 412
Text file processing, 407-419

book example problem, 412-417
FileViewer usage, 417-419

Text file statistics reporting case study, 422-432
TextInput class, 488-491
TextInput component

example of, 486
Text streams

versus object streams, 520
this keyword, 196, 209, 310, 349, 364, 481
this object, 153, 195-196
Thread class, 675

listing of, 653
Thread life cycle, 652-653
Threads, 649-667, 678

code executed by, 651
creating, 653
in sleep mode, 654, 657
starting, 654

Throwable class, 377, 378, 379, 383
constructors of, 387
extending subclasses of, 388
toString() method in, 434

824 Index

Throwable superclass, 433, 434
throws clause, 375, 388, 391-392, 434

exceptions to declare in, 392
throw statement, 434

syntax for, 391
Time class, 332, 333
Timer class, 224, 676
Tokenizing streams, 376
Tokens, 404, 434
Toolkit class, 477, 478

getPrintJob from, 548
toReversePolish method

algorithm for, 732
toString() method, 302-303, 305

purpose of, 383
in Throwable class, 434

Truth table
for logical AND, 175, 178
for logical OR, 177, 178

try block, 382, 384, 397, 409
exiting from, 394

try clause, 375, 381, 433
TT_EOF, 405
TT_EOL, 405
TT_NUMBER, 405
TT_WORD, 405
Two-dimensional arrays, 641, 642, 643, 678

and image maps, 645
Two-dimensional shapes

drawing, 502, 534-535
Type conversion, 42, 46
Type declarations, 23, 25
Types

productions from, 747

U
UML, 64

class diagrams, 136
dependency diagrams, 141
palindrome study representation of classes, 254
representation of classes, 109, 110
representation of classes, in log cutting case

study, 118
representation of dependencies between classes,

111
representation of dependencies in log cutting case

study, 122
UML class diagram, detailed, 588
UML class-relationship diagram, 587

UML dependencies
for class Tab, 276

Unary minus (-), 35
Unary operators, 35, 40
Unary plus (+), 35
Unicode character set, 24, 25, 233
Unicode Worldwide Character Standard, 25
Uniform Resource Locator, 621, 677
Universal Modeling Language. See UML
Unix platform, 5

downloading Java 2 SDK on, 4
Unix users

inputting/saving Java program by, 9
Untrusted code, 674
URL. See Uniform Resource Locator
User errors

and exception handling, 382
User id, 3
Users

exceptions caused by, 376
UV index, 214-215

V
Value added tax (VAT), 37
Value of integer variable counter

increasing/decreasing, 232
Values

primitive data stored by, 57
productions from, 747
return-type and, 94, 95
of strings, 163

Variable declarations, 46, 95
Variables, 23, 25, 31-32, 145

initializing, 32
productions from, 747

Vector class, 502
methods of, 503, 505
UML dependencies on, 516

Vectors, 501, 502-507
loading elements into, 522
saving elements to, 523
screen shots for storing/retrieving data from, 506,

507
shape objects stored in, 546
structure of, 558

Verb identification, 109, 110
Video clips

links with, 620

Index 825

W
wav audio files, 127
WAV files, 674
Web browser, 621

applets run in, 678
Web server, 621
What to wear program, 167-168
WhereIsTheMouse class, 528
while loop, 220-227, 240, 282

for alarm clock program, 225-226
data controlled, 220-223, 220-224
and for loop, 236, 239

while statement, 217
White space, 404
“Whole-part” relationships

between classes, 563
widthOfFrame, 131
width parameter, 446
Wildcard

defined, 63
Wind chill temperature, 86
WindowAdapter class, 449
Window class, 64, 65-69, 111, 444
windowClosing method, 449, 450
Window container object

creating, 65
WindowEvent object, 449
WindowListener interface, 449
Window objects, 65

format of, 67
program demonstrating class scope for, 105

WindowPane class, 477, 479, 480, 528, 564, 566,
568, 605, 676

WindowPane.java, 565
Window pane size, 478
Windows, 443

closing options, 448
Windows platform

downloading Java 2 SDK on, 4
WindowWithMenuBar class, 608

source code listing for, 605, 606-608
WinZip, 4, 6
wordChars() method, 405
WordPad, 9
World Wide Web, 2, 619, 620, 677

connecting to, 3
photographs moved over, 637
terminology of, 620-621

Wrapper classes, 153, 184-185, 209, 399-400
write method, 67
writeObject method, 521, 558
WritingPad class, 481, 482, 483-485, 566,

568
screen shot for, 597

WritingPad component
reusable, 480-485

WritingPad constructor
construction of, 481-482

WritingPad object, 481, 608
WWW. See World Wide Web

Z
Zero

and behavior of while loop, 221
Zip utilities, 4

826 Index

	0763714356
	Contents
	Chapter 0 Introduction
	0.1 What is Java?
	0.2 Using the Internet
	0.3 Downloading the Java 2 SDK for Windows, Unix (Solaris), and Linux Users
	0.4 Downloading Java 2 SDK Documentation
	0.5 Creating a Java Software Development Environment
	0.6 Copying and Installing the Audio-Visual Interface (AVI)
	0.7 How to Input and Save a Java Program in the Computer
	0.8 How to Compile a Java Program
	0.9 How to Execute (run) a Java Program
	0.10 SDK Tools
	0.11 Copying and Editing Programs from the CD
	Summary

	Chapter 1 Primitive Data Types and Arithmetic
	1.1 Data
	1.2 Data Storage
	Number Systems

	1.3 Identifiers
	1.4 Syntax
	1.5 Variables and Constants
	1.6 The Format of a Simple Program
	1.7 Arithmetic
	Unary Operators
	Binary Multiplicative Operators
	Binary Additive Operators

	1.8 Operator Precedence
	1.9 Casting
	Summary
	Review Questions
	Exercises
	Programming Problems

	Chapter 2 Objects
	2.1 Introduction to Objects
	2.2 The String Class
	Declaring Objects
	Methods and Parameters
	Constructors
	String Assignment
	Instance Methods

	2.3 The Anatomy of a Simple Program Revisited
	Heading Giving Details of the Name and Purpose of the Program
	Import List
	Class Name
	Main Method

	2.4 The AVI Package
	2.5 The Window Class
	2.6 Input to a Dialog Box
	2.7 Converting Strings to Numbers
	2.8 Command Line Arguments
	2.9 Errors
	Syntax Errors
	Run-Time Errors
	Logical Errors

	Summary
	Review Questions
	Exercises
	Programming Problems

	Chapter 3 Object-Oriented Programming
	3.1 Abstract Data Type
	3.2 Constructors
	3.3 Instance Methods
	3.4 Class Methods
	3.5 Scope and Lifetime of Identifiers
	3.6 Software Development
	3.7 Object-Oriented Program Design
	Identify the Classes and Methods
	Algorithm Development
	Testing
	Compilation and Execution
	Documentation

	Case Study: Cutting Logs
	3.8 The AVI Package Revisited
	The Audio Class
	The Timer Class
	The Filmstrip Class

	Case Study: A Simulation of Rolling a Die
	Summary
	Review Questions
	Exercises
	Programming Problems

	Chapter 4 Selection
	4.1 More AVI Classes
	The Slider Class
	The RadioButtons Class

	4.2 If..else Statement
	4.3 Nested If Statement
	4.4 Conditional Expressions
	4.5 Else if Statements
	4.6 Boolean Data Type
	4.7 Switch
	4.8 Wrapper Classes
	Case Study: Body Mass Index
	4.9 Yet another AVI Class!
	The Memo Class

	4.10 The This Object
	Case Study: Validation of Dates including Leap Years
	Summary
	Review Questions
	Exercises
	Programming Problems

	Chapter 5 Repetition and One-Dimensional Arrays
	5.1 Loop Structure
	5.2 While Loop
	While Loop Controlled by a Counter
	While Loop Controlled by Data

	5.3 Do..while Loop
	5.4 Increment/Decrement Operators
	5.5 For Loop
	5.6 Which Loop?
	while
	do..while
	for

	5.7 Arrays Revisited
	5.8 Declaring and Initializing One-Dimensional Arrays
	Three Methods

	5.9 Using Arrays
	Case Study: Palindrome
	5.10 Our Last AVI Class: CheckBoxes
	The CheckBox Class

	5.11 Formatting Numbers for Output
	Case Study: Ben's Breakfast Bar
	Summary
	Review Questions
	Exercises
	Programming Problems

	Chapter 6 Advanced Concepts with Classes
	6.1 Inheritance
	6.2 An Example of Inheritance
	6.3 Overriding Superclass Methods
	6.4 Polymorphism
	6.5 Instanceof Operator
	6.6 Shadowed Variables
	6.7 Inner Classes
	6.8 Abstract Methods and Classes
	Case Study: Boats
	6.9 Interfaces
	6.10 Constructors Revisited
	6.11 Instance Methods Revisited
	6.12 Object Properties
	Comparing Objects
	Copying Objects
	Passing Objects as Parameters

	Case Study: Arithmetic of Rational Numbers
	6.13 Garbage Collection and Object Finalization
	Summary
	Review Questions
	Exercises
	Programming Problems

	Chapter 7 Exceptions and Streams
	7.1 Introduction
	7.2 Exception Classes
	7.3 Catching an Exception
	7.4 Catching Multiple Exceptions
	7.5 Creating Your Own Exception Class
	7.6 Throwing an Exception
	7.7 Finally Blocks
	7.8 Using Exception Handling
	7.9 Stream Input and Output
	7.10 The StreamTokenizer Class
	7.11 Text File Processing
	Book Example Problem
	Another Example: Using a File Viewer

	7.12 The FileDialog Class
	Case Study: Reporting on the Statistics of a Text File
	Summary
	Review Questions
	Exercises
	Programming Problems

	Chapter 8 An Introduction to the java.awt Package
	8.1 Creating a Container
	8.2 Handling an Event
	8.3 Adding a Button to the Container
	8.4 Adding Labels, Fonts, and Text Fields to a Container
	Labels
	Fonts
	Text Fields

	8.5 Adding Check Boxes, Radio Buttons, and Lists to a Container
	Check Boxes
	Radio Buttons
	List

	8.6 Creating a Reusable Container
	8.7 Creating a Reusable WritingPad Component
	8.8 Creating a Reusable DialogBox Component
	8.9 Creating a Reusable CheckBoxes Component
	8.10 Java Swing
	Summary
	Review Questions
	Exercises
	Programming Problems

	Chapter 9 Vectors, Serialization, and the java.awt Graphics Class
	9.1 Vectors
	Case Study: Chemical Elements
	9.2 Saving and Loading Serializable Objects
	9.3 The Graphics Class
	9.4 Mouse Events
	9.5 Pop-Up Menus
	9.6 Painting the Screen
	9.7 Printing Objects
	Summary
	Review Questions
	Exercises
	Programming Problems

	Chapter 10 Objects Working Together
	10.1 Packages
	10.2 Associations
	10.3 CRC Cards
	10.4 Aggregation
	10.5 Composition
	10.6 Building a Student Management System
	10.7 Menus Revisited
	10.8 Testing the Student Management System
	Summary
	Review Questions
	Exercises
	Programming Problems

	Chapter 11 Applets and Threads
	11.1 Introduction
	11.2 Applets
	11.3 Input to Applets
	11.4 Playing Sounds
	11.5 Displaying Images
	11.6 Loading Images
	11.7 Arrays Revisited
	11.8 Image Maps
	11.9 Threads
	Case Study: An Example of Multithreading
	11.10 Animation
	11.11 Restrictions
	11.12 Sound and Images with Applications
	Sound
	Images

	11.13 Conclusion
	Summary
	Review Questions
	Exercises
	Programming Problems

	Chapter 12 Sorting, Searching, and Dynamic Data Structures
	12.1 Sorting
	12.2 Class java.util.Arrays—Sort
	12.3 Sequential Search
	12.4 Class java.util.Arrays—Binary Search
	12.5 Linked Lists
	LinkedList Class

	12.6 Stacks
	Case Study: Using a Stack for Converting Algebraic Expressions
	Summary
	Review Questions
	Exercises
	Programming Problems

	Appendix A: Tables
	A.1 ASCII Characters
	A.2 Java Primitive Data Types
	A.3 Operator Priorities
	A.4 Escape-Sequence Characters

	Appendix B: Syntax of Java
	B.1 Productions of Lexical Structures
	B.2 Productions from Types, Values, and Variables
	B.3 Productions from Names
	B.4 Productions from Packages
	B.5 Productions Used Only in the LALR(1) Grammar
	B.6 Productions from Classes
	Productions from Class Declarations
	Productions from Field Declarations
	Productions from Method Declarations
	Productions from Static Initializers
	Productions from Constructor Declarations

	B.7 Productions from Interfaces
	Productions from Interface Declarations

	B.8 Productions from Arrays
	B.9 Productions from Blocks and Statements
	B.10 Productions from Expressions

	Appendix C: Answers to Exercises
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

